Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 88, No 5 (2024)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Articles

Models of representations for classical series of Lie algebras

Artamonov D.V.

Abstract

By a model of representations of a Lie algebra we mean a representation which isa direct sum of all irreducible finite-dimensional representations takenwith multiplicity $1$. An explicit construction ofa model of representations for all classical series of simple Lie algebrasis given. This construction is generic for all classical series of Lie algebras.The space of the model is constructed as the space of polynomial solutions ofa system of partial differential equations, where the equations areconstructed form relations between minors of matrices taken fromthe corresponding Lie group. This system admits a simplificationvery close to the GKZ system, which is satisfiedby $A$-hypergeometric functions.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2024;88(5):3-46
pages 3-46 views

Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps

Golota A.S.

Abstract

Let $X$ be a complex projective variety. Suppose that the group of birational automorphisms of $X$ contains finite subgroups isomorphic to $(\mathbb{Z}/N\mathbb{Z})^r$ for $r$ fixed and $N$ arbitrarily large. We show that $r$ does not exceed $2\dim(X)$. Moreover, the equality holds if and only if $X$ is birational to an abelian variety. We also show that an analogous result holds for groups of bimeromorphic automorphisms of compact Kähler spaces under some additional assumptions.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2024;88(5):47-66
pages 47-66 views

Nuttall decomposition of a three-sheeted torus

Nasyrov S.R.

Abstract

With the help of the Weierstrass elliptic functions, we study the problem ofdescribing the Nuttall decomposition of a three-sheeted compact Riemannsurface of genus $1$ related to an Abelian integral on the surface.This decomposition plays an important role in investigation ofHermite–Pade diagonal approximations.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2024;88(5):67-126
pages 67-126 views

Local analog of the Deligne–Riemann–Roch isomorphism for line bundles in relative dimension 1

Osipov D.V.

Abstract

We prove a local analog of the Deligne–Riemann–Roch isomorphism in the case of line bundles and relative dimension $1$. This local analog consists in computation of the class of $12$th power of the determinant central extension of a group ind-scheme $\mathcal G$ by the multiplicative group scheme over $\mathbb Q$ via the product of $2$-cocyles in the second cohomology group. These $2$-cocycles are the compositions of the Contou-Carrère symbol with the $\cup$-product of $1$-cocycles. The group ind-scheme $\mathcal{G}$ represents the functor which assigns to every commutative ring $A$ the group that is the semidirect product of the group $A((t))^*$ of invertible elements of $A((t))$ and the group of continuous $A$-automorphisms of $A$-algebra $A((t))$. The determinant central extension naturally acts on the determinant line bundle on the moduli stack of geometric data (proper quintets). A proper quintet is a collection of a proper family of curves over $\operatorname{Spec} A$, a line bundle on this family, a section of this family, a relative formal parameter at the section, a formal trivialization of the bundle at the section that satisfy further conditions.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2024;88(5):127-173
pages 127-173 views

Pfister forms and a conjecture due to Colliot–Thelène in the mixed characteristic case

Panin I.A., Tyurin D.N.

Abstract

Let $R$ be a regular local ring of mixed characteristic $(0,p)$, where $p\neq 2$ is a prime number.Suppose that the quotient ring $R/pR$ is also regular. We fix a non-degenerate Pfister form $Q(T_{1},\ldots,T_{2^{m}})$ over $R$and an invertible element $c$ in $R$. Then the equation $Q(T_{1},\ldots,T_{2^{m}})=c$ has a solution over $R$if and only if it has a solution over the fraction field $K$.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2024;88(5):174-186
pages 174-186 views

Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems

Peng Z., Yang G., Liu Z., Migórski S.

Abstract

The aim of this paper is to examine an inverse problem of parameter identification in an evolutionary quasi-variational hemivariational inequality in infinite dimensional reflexive Banach spaces. First, the solvability and compactness of the solution set to the inequality are established by employing a fixed point argument and tools of non-linear analysis. Then, general existence and compactness results for the inverse problem have been proved. Finally, we illustrate the applicability of the results in the study of an identification problem for an initial-boundary value problem of parabolic type with mixed multivalued and non-monotone boundary conditions and a state constraint.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 2024;88(5):187-210
pages 187-210 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».