Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
- Authors: Golota A.S.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 88, No 5 (2024)
- Pages: 47-66
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/265537
- DOI: https://doi.org/10.4213/im9568
- ID: 265537
Cite item
Abstract
About the authors
Alexey Sergeevich Golota
Steklov Mathematical Institute of Russian Academy of Sciences
ORCID iD: 0000-0002-5632-3963
Scopus Author ID: 57219245520
ResearcherId: M-1425-2017
without scientific degree
References
- D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
- M. Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991, xviii+618 pp.
- C. Birkar, “Singularities of linear systems and boundedness of Fano varieties”, Ann. of Math. (2), 193:2 (2021), 347–405
- E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302
- S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. Ecole Norm. Sup. (4), 37:1 (2004), 45–76
- T. Bandman, Yu. G. Zarhin, “Jordan groups, conic bundles and abelian varieties”, Algebr. Geom., 4:2 (2017), 229–246
- F. Campana, “Connexite rationnelle des varietes de Fano”, Ann. Sci. Ecole Norm. Sup. (4), 25:5 (1992), 539–545
- F. Campana, “Orbifolds, special varieties and classification theory: an appendix”, Ann. Inst. Fourier (Grenoble), 54:3 (2004), 631–665
- A. Fujiki, “Closedness of the Douady spaces of compact Kähler spaces”, Publ. Res. Inst. Math. Sci., 14:1 (1978/79), 1–52
- А. С. Голота, “Свойство Жордана для групп бимероморфных автоморфизмов компактных кэлеровых пространств размерности 3”, Матем. сб., 214:1 (2023), 31–42
- T. Graber, J. Harris, J. Starr, “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67
- H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer-Verlag, Berlin, 1984, xviii+249 pp.
- A. Höring, Th. Peternell, “Mori fibre spaces for Kähler threefolds”, J. Math. Sci. Univ. Tokyo, 22:1 (2015), 219–246
- A. Höring, Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264
- C. Jordan, “Memoire sur les equations differentielles lineaires à integrale algebrique”, J. Reine Angew. Math., 1878:84 (1878), 89–215
- Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
- J. Kollar, Y. Miyaoka, Sh. Mori, “Rationally connected varieties”, J. Algebraic Geom., 1:3 (1992), 429–448
- D. I. Lieberman, “Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds”, Fonctions de plusieurs variables complexes, III, Sem. François Norguet, 1975–1977, Lecture Notes in Math., 670, Springer, Berlin, 1978, 140–186
- J. Moraga, Kawamata log terminal singularities of full rank
- J. Moraga, “Fano-type surfaces with large cyclic automorphisms”, Forum Math. Sigma, 9 (2021), e54, 27 pp.
- J. Moraga, On a toroidalization of klt singularities
- I. Mundet i Riera, “Discrete degree of symmetry of manifolds”, Transform. Groups, 2024, 1–38, Publ. online
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
- Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418
- Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов неунилинейчатых трехмерных кэлеровых многообразий”, Матем. сб., 213:12 (2022), 86–108
- G. R. Robinson, “On linear groups”, J. Algebra, 131:2 (1990), 527–534
- J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
- H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14 (1974), 1–28
- K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
- D. Wright, “Abelian subgroups of $operatorname{Aut}_{k}(k[X,Y])$ and applications to actions on the affine plane”, Illinois J. Math., 23:4 (1979), 579–634
- Jinsong Xu, Finite $p$-groups of birational automorphisms and characterizations of rational varieties
- Jinsong Xu, “A remark on the rank of finite $p$-groups of birational automorphisms”, C. R. Math. Acad. Sci. Paris, 358:7 (2020), 827–829
- Yu. G. Zarhin, “Theta groups and products of Abelian and rational varieties”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 299–304
Supplementary files
