Rational and $p$-adic analogues of J. H. C. Whitehead's conjecture
- Авторы: Михович А.М.1
-
Учреждения:
- Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow
- Выпуск: Том 89, № 2 (2025)
- Страницы: 60-104
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1607-0046/article/view/303947
- DOI: https://doi.org/10.4213/im9597
- ID: 303947
Цитировать
Аннотация
We show that subpresentations of aspherical prounipotent presentations over fields of characteristic zero and subpresentations of aspherical pro-$p$-presentations are aspherical. The results are regarded as affirmative answers to rational and $p$-adic analogs of J. H. C. Whitehead conjecture. Methods of affine group schemes make it possible to unify the presentation for pro-$p$-groups and pro-unipotent groups in characteristic zero. This approach, in particular, allows us to put a strict mathematical reason under the philosophy proposed by J.-P. Serre; applications of our results to the classical Whitehead's problem are discussed as well. Bibliography: 52 titles.
Об авторах
Андрей Михайлович Михович
Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow
Автор, ответственный за переписку.
Email: amikhovich@gmail.com
кандидат физико-математических наук, без звания
Список литературы
- E. Abe, Hopf algebras, Transl. from the Japan., Cambridge Tracts in Math., 74, Cambridge Univ. Press, Cambridge–New York, 1980, xii+284 pp.
- D. J. Anick, “A rational homotopy analog of Whitehead's problem”, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., 1183, Springer-Verlag, Berlin, 1986, 28–31
- H. Bass, “Traces and Euler characteristics”, Homological group theory (Durham, 1977), London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge–New York, 1979, 1–26
- G. Baumslag, E. Dyer, A. Heller, “The topology of discrete groups”, J. Pure Appl. Algebra, 16:1 (1980), 1–47
- A. J. Berrick, J. A. Hillman, “Whitehead's asphericity question and its relation to other open problems”, Algebraic topology and related topics, Trends Math., Birkhäuser/Springer, Singapore, 2019, 27–49
- M. Bestvina, N. Brady, “Morse theory and finiteness properties of groups”, Invent. Math., 129:3 (1997), 445–470
- W. A. Bogley, “J. H. C. Whitehead's asphericity question”, Two-dimensional homotopy and combinatorial group theory, London Math. Soc. Lecture Note Ser., 197, Cambridge Univ. Press, Cambridge, 1993, 309–334
- A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., 304, Springer-Verlag, Berlin–New York, 1972, v+348 pp.
- R. Brown, J. Huebschmann, “Identities among relations”, Low-dimensional topology (Bangor, 1979), London Math. Soc. Lecture Note Ser., 48, Cambridge Univ. Press, Cambridge–New York, 1982, 153–202
- R. Brown, J.-L. Loday, “Van Kampen theorems for diagrams of spaces”, With an appendix by M. Zisman, Topology, 26:3 (1987), 311–335
- P. Cartier, “A primer of Hopf algebras”, Frontiers in number theory, physics, and geometry. II, Springer-Verlag, Berlin, 2007, 537–615
- A. Deleanu, “On a theorem of Baumslag, Dyer and Heller linking group theory and topology”, Cah. Topol. Geom. Differ. Categ., 23:3 (1982), 231–242
- J. Dieudonne, Introduction to the theory of formal groups, Pure Appl. Math., 20, Marcel Dekker, Inc., New York, 1973, xii+265 pp.
- B. Eckmann, “Poincare duality groups of dimension two are surface groups”, Combinatorial group theory and topology (Alta, UT, 1984), Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987, 35–51
- P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Progr. Math., 174, Birkhäuser Verlag, Basel, 1999, xvi+510 pp.
- A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tohoku Math. J. (2), 9:2 (1957), 119–221
- A. Grothendieck, À la poursuite des champs, v. I, Doc. Math. (Paris), 20, Soc. Math. France, Paris, 2022, cxxi+446 pp.
- R. Hain, M. Matsumoto, “Weighted completion of Galois groups and Galois actions on the fundamental group of $mathbb{P}^1-{0,1,infty}$”, Compos. Math., 139:2 (2003), 119–167
- R. M. Hain, “Algebraic cycles and extensions of variations of mixed Hodge structure”, Complex geometry and Lie theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., 53, Amer. Math. Soc., Providence, RI, 1991, 175–221
- А. Хатчер, Алгебраическая топология, МЦНМО, М., 2011, 688 с.
- G. Hochschild, J.-P. Serre, “Cohomology of group extensions”, Trans. Amer. Math. Soc., 74 (1953), 110–134
- J. Howie, “Bestvina–Brady groups and the plus construction”, Math. Proc. Cambridge Philos. Soc., 127:3 (1999), 487–493
- Xу Сы-Цзян, Теория гомотопий, Мир, М., 1964, 468 с.
- J. C. Jantzen, Representations of algebraic groups, Math. Surveys Monogr., 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003, xiv+576 pp.
- D. M. Kan, “A relation between $mathrm{CW}$-complexes and free c.s.s. groups”, Amer. J. Math., 81:2 (1959), 512–528
- K. P. Knudson, “Relative completions and the cohomology of linear groups over local rings”, J. Lond. Math. Soc. (2), 65:1 (2002), 183–203
- Х. Кох, Теория Галуа $p$-расширений, Мир, М., 1973, 199 с.
- A. Lubotzky, “Pro-finite presentations”, J. Algebra, 242:2 (2001), 672–690
- A. Lubotzky, A. Magid, “Cohomology of unipotent and prounipotent groups”, J. Algebra, 74:1 (1982), 76–95
- A. Lubotzky, A. R. Magid, “Cohomology, Poincare series, and group algebras of unipotent groups”, Amer. J. Math., 107:3 (1985), 531–553
- A. R. Magid, “Relation modules of prounipotent groups”, J. Algebra, 109:1 (1987), 52–68
- J. P. May, Simplicial objects in algebraic topology, Chicago Lectures in Math., Reprint of the 1967 original, Univ. Chicago Press, Chicago, IL, 1992, viii+161 pp.
- A. M. Mikhovich, “Quasirationality and prounipotent crossed modules”, J. Knot Theory Ramifications, 28:13 (2019), 1940012, 23 pp.
- A. Mikhovich, “Complete group rings as Hecke algebras”, Topology Appl., 275 (2020), 107027, 9 pp.
- A. M. Mikhovich, “Identity theorem for pro-$p$-groups”, Knots, low-dimensional topology and applications, Springer Proc. Math. Stat., 284, Springer, Cham, 2019, 363–387
- A. M. Mikhovich, Bousfield–Kan completions of subcontractible presentations, 2024, 10 pp.
- J. Milnor, “On spaces having the homotopy type of a $mathrm{CW}$-complex”, Trans. Amer. Math. Soc., 90:2 (1959), 272–280
- S. Montgomery, Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. Math., 82, Amer. Math. Soc., Providence, RI, 1993, xiv+238 pp.
- A. Mutlu, T. Porter, “Free crossed resolutions from simplicial resolutions with given CW-basis”, Cah. Topol. Geom. Differ. Categ., 40:4 (1999), 261–283
- T. Porter, Profinite algebraic homotopy
- D. Quillen, “Rational homotopy theory”, Ann. of Math. (2), 90:2 (1969), 205–295
- L. Ribes, P. Zalesskii, Profinite groups, Ergeb. Math. Grenzgeb. (3), 40, 2nd ed., Springer-Verlag, Berlin, 2010, xvi+464 pp.
- Н. С. Романовский, “О метабелевых про-$p$-группах с одним соотношением”, Алгебра и логика, 59:1 (2020), 116–122
- У. Рудин, Функциональный анализ, Мир, М., 1975, 443 с.
- Ж.-П. Серр, Алгебры Ли и группы Ли, Мир, М., 1969, 375 с.
- Ж. П. Серр, Когомологии Галуа, Мир, М., 1968, 208 с.
- И. Р. Шафаревич, “Основные понятия алгебры”, Алгебра – 1, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 11, ВИНИТИ, М., 1986, 5–279
- Д. Сулливан, Геометрическая топология. Локализация, периодичность и симметрия Галуа, Мир, М., 1975, 284 с.
- В. М. Цветков, “О профгруппах когомологической размерности два”, Докл. АН СССР, 271:6 (1983), 1329–1332
- A. Vezzani, The pro-unipotent completion
- W. C. Waterhouse, Introduction to affine group schemes, Grad. Texts in Math., 66, Springer-Verlag, New York–Berlin, 1979, xi+164 pp.
- J. H. C. Whitehead, “On adding relations to homotopy groups”, Ann. of Math. (2), 42:2 (1941), 409–428
Дополнительные файлы
