Rational and $p$-adic analogues of J. H. C. Whitehead's conjecture
- Authors: Mikhovich A.M.1
-
Affiliations:
- Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow
- Issue: Vol 89, No 2 (2025)
- Pages: 60-104
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/303947
- DOI: https://doi.org/10.4213/im9597
- ID: 303947
Cite item
Abstract
We show that subpresentations of aspherical prounipotent presentations over fields of characteristic zero and subpresentations of aspherical pro-$p$-presentations are aspherical. The results are regarded as affirmative answers to the rational and $p$-adic analogues of J. H. C. Whitehead conjecture. Methods of affine group schemes make it possible to unify the presentation for pro-$p$-groups and pro-unipotent groups in characteristic zero. This approach, in particular, allows us to put a rigour mathematical reason under the philosophy proposed by J.-P. Serre; applications of our results to the classical Whitehead's problem are discussed as well.
About the authors
Andrey Mikhaylovich Mikhovich
Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow
Author for correspondence.
Email: amikhovich@gmail.com
Candidate of physico-mathematical sciences, no status
References
- E. Abe, Hopf algebras, Transl. from the Japan., Cambridge Tracts in Math., 74, Cambridge Univ. Press, Cambridge–New York, 1980, xii+284 pp.
- D. J. Anick, “A rational homotopy analog of Whitehead's problem”, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., 1183, Springer-Verlag, Berlin, 1986, 28–31
- H. Bass, “Traces and Euler characteristics”, Homological group theory (Durham, 1977), London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge–New York, 1979, 1–26
- G. Baumslag, E. Dyer, A. Heller, “The topology of discrete groups”, J. Pure Appl. Algebra, 16:1 (1980), 1–47
- A. J. Berrick, J. A. Hillman, “Whitehead's asphericity question and its relation to other open problems”, Algebraic topology and related topics, Trends Math., Birkhäuser/Springer, Singapore, 2019, 27–49
- M. Bestvina, N. Brady, “Morse theory and finiteness properties of groups”, Invent. Math., 129:3 (1997), 445–470
- W. A. Bogley, “J. H. C. Whitehead's asphericity question”, Two-dimensional homotopy and combinatorial group theory, London Math. Soc. Lecture Note Ser., 197, Cambridge Univ. Press, Cambridge, 1993, 309–334
- A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., 304, Springer-Verlag, Berlin–New York, 1972, v+348 pp.
- R. Brown, J. Huebschmann, “Identities among relations”, Low-dimensional topology (Bangor, 1979), London Math. Soc. Lecture Note Ser., 48, Cambridge Univ. Press, Cambridge–New York, 1982, 153–202
- R. Brown, J.-L. Loday, “Van Kampen theorems for diagrams of spaces”, With an appendix by M. Zisman, Topology, 26:3 (1987), 311–335
- P. Cartier, “A primer of Hopf algebras”, Frontiers in number theory, physics, and geometry. II, Springer-Verlag, Berlin, 2007, 537–615
- A. Deleanu, “On a theorem of Baumslag, Dyer and Heller linking group theory and topology”, Cah. Topol. Geom. Differ. Categ., 23:3 (1982), 231–242
- J. Dieudonne, Introduction to the theory of formal groups, Pure Appl. Math., 20, Marcel Dekker, Inc., New York, 1973, xii+265 pp.
- B. Eckmann, “Poincare duality groups of dimension two are surface groups”, Combinatorial group theory and topology (Alta, UT, 1984), Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987, 35–51
- P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Progr. Math., 174, Birkhäuser Verlag, Basel, 1999, xvi+510 pp.
- A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tohoku Math. J. (2), 9:2 (1957), 119–221
- A. Grothendieck, À la poursuite des champs, v. I, Doc. Math. (Paris), 20, Soc. Math. France, Paris, 2022, cxxi+446 pp.
- R. Hain, M. Matsumoto, “Weighted completion of Galois groups and Galois actions on the fundamental group of $mathbb{P}^1-{0,1,infty}$”, Compos. Math., 139:2 (2003), 119–167
- R. M. Hain, “Algebraic cycles and extensions of variations of mixed Hodge structure”, Complex geometry and Lie theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., 53, Amer. Math. Soc., Providence, RI, 1991, 175–221
- А. Хатчер, Алгебраическая топология, МЦНМО, М., 2011, 688 с.
- G. Hochschild, J.-P. Serre, “Cohomology of group extensions”, Trans. Amer. Math. Soc., 74 (1953), 110–134
- J. Howie, “Bestvina–Brady groups and the plus construction”, Math. Proc. Cambridge Philos. Soc., 127:3 (1999), 487–493
- Xу Сы-Цзян, Теория гомотопий, Мир, М., 1964, 468 с.
- J. C. Jantzen, Representations of algebraic groups, Math. Surveys Monogr., 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003, xiv+576 pp.
- D. M. Kan, “A relation between $mathrm{CW}$-complexes and free c.s.s. groups”, Amer. J. Math., 81:2 (1959), 512–528
- K. P. Knudson, “Relative completions and the cohomology of linear groups over local rings”, J. Lond. Math. Soc. (2), 65:1 (2002), 183–203
- Х. Кох, Теория Галуа $p$-расширений, Мир, М., 1973, 199 с.
- A. Lubotzky, “Pro-finite presentations”, J. Algebra, 242:2 (2001), 672–690
- A. Lubotzky, A. Magid, “Cohomology of unipotent and prounipotent groups”, J. Algebra, 74:1 (1982), 76–95
- A. Lubotzky, A. R. Magid, “Cohomology, Poincare series, and group algebras of unipotent groups”, Amer. J. Math., 107:3 (1985), 531–553
- A. R. Magid, “Relation modules of prounipotent groups”, J. Algebra, 109:1 (1987), 52–68
- J. P. May, Simplicial objects in algebraic topology, Chicago Lectures in Math., Reprint of the 1967 original, Univ. Chicago Press, Chicago, IL, 1992, viii+161 pp.
- A. M. Mikhovich, “Quasirationality and prounipotent crossed modules”, J. Knot Theory Ramifications, 28:13 (2019), 1940012, 23 pp.
- A. Mikhovich, “Complete group rings as Hecke algebras”, Topology Appl., 275 (2020), 107027, 9 pp.
- A. M. Mikhovich, “Identity theorem for pro-$p$-groups”, Knots, low-dimensional topology and applications, Springer Proc. Math. Stat., 284, Springer, Cham, 2019, 363–387
- A. M. Mikhovich, Bousfield–Kan completions of subcontractible presentations, 2024, 10 pp.
- J. Milnor, “On spaces having the homotopy type of a $mathrm{CW}$-complex”, Trans. Amer. Math. Soc., 90:2 (1959), 272–280
- S. Montgomery, Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. Math., 82, Amer. Math. Soc., Providence, RI, 1993, xiv+238 pp.
- A. Mutlu, T. Porter, “Free crossed resolutions from simplicial resolutions with given CW-basis”, Cah. Topol. Geom. Differ. Categ., 40:4 (1999), 261–283
- T. Porter, Profinite algebraic homotopy
- D. Quillen, “Rational homotopy theory”, Ann. of Math. (2), 90:2 (1969), 205–295
- L. Ribes, P. Zalesskii, Profinite groups, Ergeb. Math. Grenzgeb. (3), 40, 2nd ed., Springer-Verlag, Berlin, 2010, xvi+464 pp.
- Н. С. Романовский, “О метабелевых про-$p$-группах с одним соотношением”, Алгебра и логика, 59:1 (2020), 116–122
- У. Рудин, Функциональный анализ, Мир, М., 1975, 443 с.
- Ж.-П. Серр, Алгебры Ли и группы Ли, Мир, М., 1969, 375 с.
- Ж. П. Серр, Когомологии Галуа, Мир, М., 1968, 208 с.
- И. Р. Шафаревич, “Основные понятия алгебры”, Алгебра – 1, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 11, ВИНИТИ, М., 1986, 5–279
- Д. Сулливан, Геометрическая топология. Локализация, периодичность и симметрия Галуа, Мир, М., 1975, 284 с.
- В. М. Цветков, “О профгруппах когомологической размерности два”, Докл. АН СССР, 271:6 (1983), 1329–1332
- A. Vezzani, The pro-unipotent completion
- W. C. Waterhouse, Introduction to affine group schemes, Grad. Texts in Math., 66, Springer-Verlag, New York–Berlin, 1979, xi+164 pp.
- J. H. C. Whitehead, “On adding relations to homotopy groups”, Ann. of Math. (2), 42:2 (1941), 409–428
Supplementary files
