On an analogue of Gelfond's problem for Ostrowsky expansion
- Authors: Zhukova A.A.1, Shutov A.V.2
-
Affiliations:
- Russian Academy of National Economy and Public Administration under the President of the Russian Federation (Vladimir Branch)
- Vladimir State University
- Issue: Vol 89, No 2 (2025)
- Pages: 25-44
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/303945
- DOI: https://doi.org/10.4213/im9633
- ID: 303945
Cite item
Abstract
The paper considers an analogue of A. O. Gelfond's problem on the distribution of sums of digits of $b$-ary expansions of natural numbers in arithmetic progressions. Instead of $b$-ary expansions,we consider expansions in the Ostrowsky numeration system associated with arbitrary irrational $\alpha$.
About the authors
Alla Adol'fovna Zhukova
Russian Academy of National Economy and Public Administration under the President of the Russian Federation (Vladimir Branch)
Author for correspondence.
Email: georg967@mail.ru
Candidate of physico-mathematical sciences, Associate professor
Anton Vladimirovich Shutov
Vladimir State University
Email: a1981@mail.ru
Doctor of physico-mathematical sciences, Associate professor
References
- A. O. Gelfond, “Sur les nombres qui ont des proprietes additives et multiplicatives donnees”, Acta Arith., 13:3 (1968), 259–265
- N. J. Fine, “The distribution of the sum of digits $(operatorname{mod}p)$”, Bull. Amer. Math. Soc., 71:4 (1965), 651–652
- C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646
- M. Drmota, C. Mauduit, J. Rivat, “The sum-of-digits function of polynomial sequences”, J. Lond. Math. Soc. (2), 84:1 (2011), 81–102
- M. Lamberger, J. W. Thuswaldner, “Distribution properties of digital expansions arising from linear recurrences”, Math. Slovaca, 53:1 (2003), 1–20
- A. Ostrowsky, “Bemerkungen zur Theorie der Diophantischen Approximationen”, Abh. Math. Semin. Univ. Hambg., 1:1 (1922), 77–98
- J. Coquet, G. Rhin, Ph. Toffin, “Representations des entiers naturels et independance statistique. II”, Ann. Inst. Fourier (Grenoble), 31:1 (1981), 1–15
- J. Coquet, G. Rhin, Ph. Toffin, “Fourier–Bohr spectrum of sequences related to continued fractions”, J. Number Theory, 17:3 (1983), 327–336
- D. Sharma, “Joint distribution in residue classes of the base-$q$ and Ostrowski digital sums”, Unif. Distrib. Theory, 14:2 (2019), 1–26
- А. А. Жукова, А. В. Шутов, “Об аналоге задачи Гельфонда для обобщенных разложений Цеккендорфа”, Чебышевский сб., 22:2 (2021), 104–120
- T. Stoll, “Combinatorial constructions for the Zeckendorf sum of digits of polynomial values”, Ramanujan J., 32:2 (2013), 227–243
- M. Drmota, J. Gajdosik, “The parity of the sum-of-digits-function of generalized Zeckendorf representations”, Fibonacci Quart., 36:1 (1998), 3–19
Supplementary files
