The length of the cut locus on convex surfaces
- 作者: Yuan L.1, Zamfirescu T.1,2
-
隶属关系:
- Hebei Normal University
- Technischen Universität Dortmund
- 期: 卷 88, 编号 3 (2024)
- 页面: 192-202
- 栏目: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/257720
- DOI: https://doi.org/10.4213/im9485
- ID: 257720
如何引用文章
详细
作者简介
Liping Yuan
Hebei Normal UniversityPhD, Professor
Tudor Zamfirescu
Hebei Normal University; Technischen Universität Dortmund
参考
- Ю. Д. Бураго, М. Л. Громов, Г. Я. Перельман, “Пространства А. Д. Александрова с ограниченными снизу кривизнами”, УМН, 47:2(284) (1992), 3–51
- J. Itoh, “The length of a cut locus on a surface and Ambrose's problem”, J. Differential Geom., 43:3 (1996), 642–651
- K. Shiohama, M. Tanaka, “Cut loci and distance spheres on Alexandrov surfaces”, Actes de la table ronde de geometrie differentielle (Luminy, 1992), Semin. Congr., 1, Soc. Math. France, Paris, 1996, 531–559
- T. Zamfirescu, “Many endpoints and few interior points of geodesics”, Invent. Math., 69:2 (1982), 253–257
- T. Zamfirescu, “Extreme points of the distance function on convex surfaces”, Trans. Amer. Math. Soc., 350:4 (1998), 1395–1406
- J. J. Hebda, “Metric structure of cut loci in surfaces and Ambrose's problem”, J. Differential Geom., 40:3 (1994), 621–642
- J. Itoh, T. Zamfirescu, “On the length of the cut locus on surfaces”, Stochastic geometry, convex bodies, empirical measures and applications to engineering science (Tropea, 2001), v. II, Rend. Circ. Mat. Palermo (2) Suppl., 70, Circ. Mat. Palermo, Palermo, 2002, 53–58
- J. Itoh, T. Zamfirescu, “On the length of the cut locus for finitely many points”, Adv. Geom., 5:1 (2005), 97–106
- А. Д. Александров, Внутренняя геометрия выпуклых поверхностей, Гостехиздат, М.–Л., 1948, 387 с.
- А. Д. Александров, Внутренняя геометрия выпуклых поверхностей, Гостехиздат, М.–Л., 1948, 387 с.
- Г. Буземан, Выпуклые поверхности, Наука, М., 1964, 238 с.
- T. Zamfirescu, “On the cut locus in Alexandrov spaces and applications to convex surfaces”, Pacific J. Math., 217:2 (2004), 375–386
补充文件
