634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of manifolds like the octonionic projective plane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In 1987 Brehm and Kühnel showed that any combinatorial $d$-manifold with less than $3d/2+3$ vertices is PL homeomorphic to the sphere and any combinatorial $d$-manifold with exactly $3d/2+3$ vertices is PL homeomorphic to either the sphere or a manifold like a projective plane in the sense of Eells and Kuiper. The latter possibility may occur for $d\in\{2,4,8,16\}$ only. There exist a unique $6$-vertex triangulation of $\mathbb{RP}^2$, a unique $9$-vertex triangulation of $\mathbb{CP}^2$, and at least three $15$-vertex triangulations of $\mathbb{HP}^2$. However, until now, the question of whether there exists a $27$-vertex triangulation of a manifold like the octonionic projective plane has remained open. We solve this problem by constructing a lot of examples of such triangulations. Namely, we construct $634$ vertex-transitive $27$-vertex combinatorial $16$-manifolds like the octonionic projective plane. Four of them have symmetry group $\mathrm{C}_3^3\rtimes \mathrm{C}_{13}$ of order $351$, and the other $630$ have symmetry group $\mathrm{C}_3^3$ of order $27$. Further, we construct more than $10^{103}$ non-vertex-transitive $27$-vertex combinatorial $16$-manifolds like the octonionic projective plane. Most of them have trivial symmetry group, but there are also symmetry groups $\mathrm{C}_3$, $\mathrm{C}_3^2$, and $\mathrm{C}_{13}$. We conjecture that all the triangulations constructed are PL homeomorphic to the octonionic projective plane $\mathbb{OP}^2$. Nevertheless, we have no proof of this fact so far.

About the authors

Alexander Aleksandrovich Gaifullin

Steklov Mathematical Institute of Russian Academy of Sciences; Skolkovo Institute of Science and Technology; Lomonosov Moscow State University; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

Email: agaif@mi-ras.ru
Scopus Author ID: 6602366976
ResearcherId: N-9247-2016
Doctor of physico-mathematical sciences, no status

References

  1. А. В. Алексеевский, “О жордановых конечных коммутативных подгруппах простых комплексных групп Ли”, Функц. анализ и его прил., 8:4 (1974), 1–4
  2. P. Arnoux, A. Marin, “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. II”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:2 (1991), 167–244
  3. J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39:2 (2002), 145–205
  4. B. Bagchi, B. Datta, “On Kühnel's 9-vertex complex projective plane”, Geom. Dedicata, 50:1 (1994), 1–13
  5. B. Bagchi, B. Datta, “A short proof of the uniqueness of Kühnel's 9-vertex complex projective plane”, Adv. Geom., 1:2 (2001), 157–163
  6. B. Bagchi, B. Datta, “On $k$-stellated and $k$-stacked spheres”, Discrete Math., 313:20 (2013), 2318–2329
  7. B. Benedetti, F. H. Lutz, “Random discrete Morse theory and a new library of triangulations”, Exp. Math., 23:1 (2014), 66–94
  8. A. Björner, F. H. Lutz, “Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincare homology 3-sphere”, Exp. Math., 9:2 (2000), 275–289
  9. A. Borel, “Le plan projectif des octaves et les spheres comme espaces homogènes”, C. R. Acad. Sci. Paris, 230 (1950), 1378–1380
  10. U. Brehm, W. Kühnel, “Combinatorial manifolds with few vertices”, Topology, 26:4 (1987), 465–473
  11. U. Brehm, W. Kühnel, “15-vertex triangulations of an 8-manifold”, Math. Ann., 294:1 (1992), 167–193
  12. H. Bruggesser, P. Mani, “Shellable decompositions of cells and spheres”, Math. Scand., 29:2 (1971), 197–205
  13. F. Chapoton, L. Manivel, “Triangulations and Severi varieties”, Exp. Math., 22:1 (2013), 60–73
  14. J. H. Conway, D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A. K. Peters, Ltd./CRC Press, Natick, MA, 2003, xii+159 pp.
  15. G. Danaraj, V. Klee, “Which spheres are shellable?”, Algorithmic aspects of combinatorics, Ann. Discrete Math., 2, North-Holland Publ. Comp., 1978, 33–52
  16. R. Dougherty, V. Faber, M. Murphy, “Unflippable tetrahedral complexes”, Discrete Comput. Geom., 32:3 (2004), 309–315
  17. J. Eells, Jr., N. H. Kuiper, “Manifolds which are like projective planes”, Inst. Hautes Etudes Sci. Publ. Math., 14 (1962), 5–46
  18. A. Engström, “Discrete Morse functions from Fourier transforms”, Exp. Math., 18:1 (2009), 45–53
  19. А. А. Гайфуллин, “Локальные формулы для комбинаторных классов Понтрягина”, Изв. РАН. Сер. матем., 68:5 (2004), 13–66
  20. А. А. Гайфуллин, “Построение комбинаторных многообразий с заданными наборами линков вершин”, Изв. РАН. Сер. матем., 72:5 (2008), 3–62
  21. А. А. Гайфуллин, “Минимальная триангуляция комплексной проективной плоскости, допускающая шахматную раскраску четырехмерных симплексов”, Геометрия, топология и математическая физика. II, Сборник статей. К 70-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 266, МАИК «Наука/Интерпериодика», М., 2009, 33–53
  22. А. А. Гайфуллин, “Пространства конфигураций, бизвездные преобразования и комбинаторные формулы для первого класса Понтрягина”, Дифференциальные уравнения и топология. I, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 268, МАИК «Наука/Интерпериодика», М., 2010, 76–93
  23. A. A. Gaifullin, Triangulations of the quaternionic projective plane and manifolds like the octonionic projective plane
  24. A. A. Gaifullin, On possible symmetry groups of 27-vertex triangulations of manifolds like the octonionic projective plane
  25. A. A. Gaifullin, New examples and partial classification of 15-vertex triangulations of the quaternionic projective plane
  26. А. А. Гайфуллин, Д. А. Городков, “Явный вид локальной комбинаторной формулы для первого класса Понтрягина”, УМН, 74:6(450) (2019), 161–162
  27. Д. А. Городков, “Минимальная триангуляция кватернионной проективной плоскости”, УМН, 71:6(432) (2016), 159–160
  28. D. Gorodkov, “A 15-vertex triangulation of the quaternionic projective plane”, Discrete Comput. Geom., 62:2 (2019), 348–373
  29. R. L. Griess, Jr., “Elementary abelian $p$-subgroups of algebraic groups”, Geom. Dedicata, 39:3 (1991), 253–305
  30. B. Grünbaum, V. P. Sreedharan, “An enumeration of simplicial $4$-polytopes with $8$ vertices”, J. Combinatorial Theory, 2:4 (1967), 437–465
  31. J. Kahn, M. Saks, D. Sturtevant, “A topological approach to evasiveness”, Combinatorica, 4:4 (1984), 297–306
  32. E. G. Köhler, F. H. Lutz, Triangulated manifolds with few vertices: vertex-transitive triangulations I
  33. L. Kramer, “Projective planes and their look-alikes”, J. Differential Geom., 64:1 (2003), 1–55
  34. W. Kühnel, Tight polyhedral submanifolds and tight triangulations, Lecture Notes in Math., 1612, Springer-Verlag, Berlin, 1995, vi+122 pp.
  35. W. Kühnel, T. F. Banchoff, “The 9-vertex complex projective plane”, Math. Intelligencer, 5:3 (1983), 11–22
  36. W. Kühnel, G. Lassmann, “The unique 3-neighborly 4-manifold with few vertices”, J. Combin. Theory Ser. A, 35:2 (1983), 173–184
  37. J. M. Landsberg, L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Algebra, 239:2 (2001), 477–512
  38. R. Lazarsfeld, “An example of 16-dimensional projective variety with a 25-dimensional secant variety”, Math. Letters, 7 (1981), 1–4
  39. W. B. R. Lickorish, “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320
  40. F. H. Lutz, Triangulated manifolds with few vertices: combinatorial manifolds
  41. J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405
  42. B. Morin, M. Yoshida, “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. I”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:1 (1991), 55–142
  43. A. Nabutovsky, “Geometry of the space of triangulations of a compact manifold”, Comm. Math. Phys., 181:2 (1996), 303–330
  44. U. Pachner, “Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten”, Arch. Math. (Basel), 30:1 (1978), 89–98
  45. U. von Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 69–86
  46. К. Рурк, Б. Сандерсон, Введение в кусочно линейную топологию, Мир, М., 1974, 208 с.
  47. N. Shimada, “Differentiable structures on the 15-sphere and Pontrjagin classes of certain manifolds”, Nagoya Math. J., 12 (1957), 59–69
  48. И. А. Володин, В. Е. Кузнецов, А. Т. Фоменко, “О проблеме алгоритмического распознавания стандартной трехмерной сферы”, УМН, 29:5(179) (1974), 71–168
  49. I. Yokota, “Realization of automorphisms $sigma$ of order $3$ and $G^{sigma}$ of compact exceptional Lie groups $G$. I. $G=G_2,F_4,E_6$”, J. Fac. Sci. Shinshu Univ., 20:2 (1985), 131–144
  50. Ф. Л. Зак, “Проекции алгебраических многообразий”, Матем. сб., 116(158):4(12) (1981), 593–602
  51. Ф. Л. Зак, “Многообразия Севери”, Матем. сб., 126(168):1 (1985), 115–132
  52. E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Etudes Sci., Paris, 1963

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Гайфуллин А.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».