Tau functions of solutions of soliton equations
- Autores: Domrin A.V.1,2,3
 - 
							Afiliações: 
							
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
 - Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center
 - Moscow Center for Fundamental and Applied Mathematics
 
 - Edição: Volume 85, Nº 3 (2021)
 - Páginas: 30-51
 - Seção: Articles
 - URL: https://bakhtiniada.ru/1607-0046/article/view/133842
 - DOI: https://doi.org/10.4213/im9058
 - ID: 133842
 
Citar
Resumo
Palavras-chave
Sobre autores
Andrei Domrin
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center; Moscow Center for Fundamental and Applied Mathematics
														Email: domrin@mi-ras.ru
				                					                																			                								Doctor of physico-mathematical sciences, Professor				                														
Bibliografia
- А. В. Домрин, “Мероморфное продолжение решений солитонных уравнений”, Изв. РАН. Сер. матем., 74:3 (2010), 23–44
 - G. Wilson, “The $tau$-functions of the $mathfrak g$AKNS equations”, Integrable systems, The Verdier memorial conference (Luminy, 1991), Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993, 131–145
 - R. Hirota, The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge Univ. Press, Cambridge, 2004, xii+200 pp.
 - M. Kashiwara, T. Miwa, “The $tau$ function of the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. I”, Proc. Japan Acad. Ser. A Math. Sci., 57:7 (1981), 342–347
 - M. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds”, Random systems and dynamical systems (Kyoto Univ., Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto Univ., Research Institute for Mathematical Sciences, Kyoto, 1981, 30–46
 - G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Etudes Sci. Publ. Math., 61 (1985), 5–65
 - J. Dorfmeister, “Weighted $ell_1$-Grassmannians and Banach manifolds of solutions of the KP-equation and the KdV-equation”, Math. Nachr., 180 (1996), 43–73
 - M. J. Dupre, J. F. Glazebrook, E. Previato, “Differential algebras with Banach-algebra coefficients. II: The operator cross-ratio tau-function and the Schwarzian derivative”, Complex Anal. Oper. Theory, 7:6 (2013), 1713–1734
 - M. Cafasso, Chao-Zhong Wu, “Tau functions and the limit of block Toeplitz determinants”, Int. Math. Res. Not. IMRN, 2015:20 (2015), 10339–10366
 - Chuu-Lian Terng, K. Uhlenbeck, “Tau functions and Virasoro actions for soliton hierarchies”, Comm. Math. Phys., 342:1 (2016), 117–150
 - А. Ньюэлл, Солитоны в математике и физике, Мир, М., 1989, 326 с.
 - R. Carroll, “On the determinant theme for tau functions, Grassmannians, and inverse scattering”, Inverse scattering and applications (Univ. of Massachusetts, Amherst, MA, 1990), Contemp. Math., 122, Amer. Math. Soc., Providence, RI, 1991, 23–28
 - P. D. Lax, Functional analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience [John Wiley & Sons], New York, 2002, xx+580 pp.
 - A. Pietsch, History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007, xxiv+855 pp.
 - I. Gohberg, S. Coldberg, N. Krupnik, Traces and determinants of linear operators, Oper. Theory Adv. Appl., 116, Birkhäuser Verlag, Basel, 2000, x+258 pp.
 - Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, т. 1, 2, 2-е изд., Физматгиз, М., 1963, 343 с., 516 с.
 - Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
 - А. Ф. Леонтьев, Целые функции. Ряды экспонент, Наука, М., 1983, 176 с.
 - H. Widom, “On the limit of block Toeplitz determinants”, Proc. Amer. Math. Soc., 50 (1975), 167–173
 - B. Malgrange, “Deformations isomonodromiques, forme de Liouville, fonction $tau$”, Ann. Inst. Fourier (Grenoble), 54:5 (2004), 1371–1392
 - А. В. Домрин, “Замечания о локальном варианте метода обратной задачи рассеяния”, Комплексный анализ и приложения, Сборник статей, Тр. МИАН, 253, Наука, МАИК «Наука/Интерпериодика», М., 2006, 46–60
 - А. В. Комлов, “О полюсах пикаровских потенциалов”, Тр. ММО, 71, УРСС, М., 2010, 270–282
 - J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240
 - Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986, 528 с.
 
Arquivos suplementares
				
			
						
						
						
						
					
				
