Automorphisms of cubic surfaces in positive characteristic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We classify all possible automorphism groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quartic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automorphism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive characteristic, together with a group action, can be lifted to characteristic zero.

About the authors

Igor Vladimirovich Dolgachev

University of Michigan, Department of Mathematics

Email: idolga@umich.edu
PhD

Alexander Duncan

University of South Carolina

Email: duncan@math.sc.edu
PhD

References

  1. I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
  2. S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer & Müller, Berlin, 1895, 111 pp.
  3. A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann., 48:1-2 (1896), 195–240
  4. B. Segre, The non-singular cubic surfaces, Oxford Univ. Press, Oxford, 1942, xi+180 pp.
  5. T. Hosoh, “Automorphism groups of cubic surfaces”, J. Algebra, 192:2 (1997), 651–677
  6. I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
  7. R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59
  8. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp., With comput. assistance from J. G. Thackray
  9. J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Seminaire Bourbaki, Exposes 997–1011, v. 2008/2009, Asterisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000
  10. I. Dolgachev, A. Duncan, “Regular pairs of quadratic forms on odd-dimensional spaces in characteristic $2$”, Algebra Number Theory, 12:1 (2018), 99–130
  11. A. Emch, “On a new normal form of the general cubic surface”, Amer. J. Math., 53:4 (1931), 902–910
  12. Ф. Клейн, Лекции об икосаэдре и решении уравнений пятой степени, Наука, М., 1989, 336 с.
  13. D. J. Winter, “Representations of locally finite groups”, Bull. Amer. Math. Soc., 74 (1968), 145–148
  14. M. Suzuki, Group theory. I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982, xiv+434 pp.
  15. Ю. И. Манин, Кубические формы, Наука, М., 1972, 304 с.
  16. G. Neuman, “Rational surfaces with too many vector fields”, Proc. Amer. Math. Soc., 76:2 (1979), 189–195
  17. E. Dardanelli, B. van Geemen, “Hessians and the moduli space of cubic surfaces”, Algebraic geometry, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007, 17–36
  18. A. Beauville, “Sur les hypersurfaces dont les sections hyperplanes sont à module constant”, The Grothendieck Festschrift, With an appendix by D. Eisenbud, C. Huneke, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 121–133
  19. W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp.
  20. M. Demazure, “Resultant, discriminant”, Enseign. Math. (2), 58:3-4 (2012), 333–373
  21. Z. Chen, “A prehomogeneous vector space of characteristic $3$”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer, Berlin, 1986, 266–276
  22. A. M. Cohen, D. B. Wales, “$operatorname{GL}(4)$-orbits in a $16$-dimensional module for characteristic $3$”, J. Algebra, 185:1 (1996), 85–107
  23. T. Shioda, “Arithmetic and geometry of Fermat curves”, Algebraic geometry seminar (Singapore, 1987), World Sci. Publ., Singapore, 1988, 95–102
  24. J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1985, x+316 pp.
  25. A. Emch, “Properties of the cubic surface derived from a new normal form”, Amer. J. Math., 61:1 (1939), 115–122
  26. A. L. Dixon, V. C. Morton, “Planes, points, and surfaces associated with a cubic surface”, Proc. London Math. Soc. (2), 37 (1934), 221–240
  27. S. Saito, “General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings”, Amer. J. Math., 109:6 (1987), 1009–1042
  28. H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia Math. Sci., 139, Invariant Theory Algebr. Transform. Groups, 8, Springer-Verlag, Berlin, 2011, xiv+233 pp.
  29. J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Dolgachev I.V., Duncan A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).