Automorphisms of cubic surfaces in positive characteristic
- Authors: Dolgachev I.V.1, Duncan A.2
-
Affiliations:
- University of Michigan, Department of Mathematics
- University of South Carolina
- Issue: Vol 83, No 3 (2019)
- Pages: 15-92
- Section: Articles
- URL: https://bakhtiniada.ru/1607-0046/article/view/133772
- DOI: https://doi.org/10.4213/im8803
- ID: 133772
Cite item
Abstract
We classify all possible automorphism groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quartic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automorphism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive characteristic, together with a group action, can be lifted to characteristic zero.
About the authors
Igor Vladimirovich Dolgachev
University of Michigan, Department of Mathematics
Email: idolga@umich.edu
PhD
Alexander Duncan
University of South Carolina
Email: duncan@math.sc.edu
PhD
References
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
- S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer & Müller, Berlin, 1895, 111 pp.
- A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann., 48:1-2 (1896), 195–240
- B. Segre, The non-singular cubic surfaces, Oxford Univ. Press, Oxford, 1942, xi+180 pp.
- T. Hosoh, “Automorphism groups of cubic surfaces”, J. Algebra, 192:2 (1997), 651–677
- I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
- R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp., With comput. assistance from J. G. Thackray
- J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Seminaire Bourbaki, Exposes 997–1011, v. 2008/2009, Asterisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000
- I. Dolgachev, A. Duncan, “Regular pairs of quadratic forms on odd-dimensional spaces in characteristic $2$”, Algebra Number Theory, 12:1 (2018), 99–130
- A. Emch, “On a new normal form of the general cubic surface”, Amer. J. Math., 53:4 (1931), 902–910
- Ф. Клейн, Лекции об икосаэдре и решении уравнений пятой степени, Наука, М., 1989, 336 с.
- D. J. Winter, “Representations of locally finite groups”, Bull. Amer. Math. Soc., 74 (1968), 145–148
- M. Suzuki, Group theory. I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982, xiv+434 pp.
- Ю. И. Манин, Кубические формы, Наука, М., 1972, 304 с.
- G. Neuman, “Rational surfaces with too many vector fields”, Proc. Amer. Math. Soc., 76:2 (1979), 189–195
- E. Dardanelli, B. van Geemen, “Hessians and the moduli space of cubic surfaces”, Algebraic geometry, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007, 17–36
- A. Beauville, “Sur les hypersurfaces dont les sections hyperplanes sont à module constant”, The Grothendieck Festschrift, With an appendix by D. Eisenbud, C. Huneke, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 121–133
- W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp.
- M. Demazure, “Resultant, discriminant”, Enseign. Math. (2), 58:3-4 (2012), 333–373
- Z. Chen, “A prehomogeneous vector space of characteristic $3$”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer, Berlin, 1986, 266–276
- A. M. Cohen, D. B. Wales, “$operatorname{GL}(4)$-orbits in a $16$-dimensional module for characteristic $3$”, J. Algebra, 185:1 (1996), 85–107
- T. Shioda, “Arithmetic and geometry of Fermat curves”, Algebraic geometry seminar (Singapore, 1987), World Sci. Publ., Singapore, 1988, 95–102
- J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1985, x+316 pp.
- A. Emch, “Properties of the cubic surface derived from a new normal form”, Amer. J. Math., 61:1 (1939), 115–122
- A. L. Dixon, V. C. Morton, “Planes, points, and surfaces associated with a cubic surface”, Proc. London Math. Soc. (2), 37 (1934), 221–240
- S. Saito, “General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings”, Amer. J. Math., 109:6 (1987), 1009–1042
- H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia Math. Sci., 139, Invariant Theory Algebr. Transform. Groups, 8, Springer-Verlag, Berlin, 2011, xiv+233 pp.
- J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp.
Supplementary files
