Современные тенденции воздействия на микробиом кожи с помощью дерматокосметики: практические аспекты применения пробиотических бактерий в составе биотических комплексов
- Авторы: Адаскевич В.П.1, Городович А.Н.2, Заславский Д.В.3, Охлопков В.А.4, Смирнова И.О.5,6, Таганов А.В.7, Тамразова О.Б.8, Шливко И.Л.9, Хажомия К.Д.6
-
Учреждения:
- Витебский государственный ордена Дружбы народов медицинский университет
- Полоцкая центральная городская больница
- Санкт-Петербургский государственный педиатрический медицинский университет
- Федеральный научно-клинический центр реаниматологии и реабилитологии
- Санкт-Петербургский государственный университет
- Городской кожно-венерологический диспансер
- Клиника кожных болезней имени Пьера Волькенштейна
- Российский университет дружбы народов имени Патриса Лумумбы
- Приволжский исследовательский медицинский университет
- Выпуск: Том 28, № 2 (2025)
- Страницы: 171-184
- Раздел: ДЕРМАТОЛОГИЯ
- URL: https://bakhtiniada.ru/1560-9588/article/view/313063
- DOI: https://doi.org/10.17816/dv642248
- EDN: https://elibrary.ru/MOCEQU
- ID: 313063
Цитировать
Аннотация
В последние несколько десятилетий число исследований микробиоты и микробиома живых организмов, населяющих кожу, стремительно растёт, а вклад микробного сообщества в реализацию функций кожи и патогенез дерматозов вызывает большой научный и общественный интерес. Понимание вклада дисбиоза кожи в её старение, повышение чувствительности и патогенез хронических дерматозов послужило основанием для разработки стратегий, направленных на коррекцию микробиоты кожи.
Одним из направлений бактериотерапии заболеваний кожи является использование биотических комплексов, в состав которых входят метабиотики комменсальных бактерий человека и пребиотики. Использование биотических комплексов позволяет эффективно модулировать микробиом кожи и её барьерные функции.
Практическим воплощением использования метабиотиков пробиотических бактерий в составе биотических комплексов стала разработка активных систем ухода за кожей, содержащих лизаты пробиотических микроорганизмов Lactococcus, Lactobacillus и Bifidobacterium и пребиотиков трегалозы и инулина. Действие таких средств может быть усилено активными компонентами с доказанной эффективностью, такими как пантенол, масло жожоба, масло ши и другие, обеспечивающими очищение, увлажнение и питание кожи. Проведённые исследования продемонстрировали эффективность и безопасность средств с усиленной формулой в составе комплексного лечения пациентов с атопическим дерматитом. В основе их клинических эффектов лежит восстановление кожного барьера (по динамике показателей рH-метрии, трансэпидермальной потери воды и эластичности кожи), а также нормализация микробного состава кожи (снижение частоты определения филумов, которые относятся к условно-патогенным микроорганизмам, и снижение частоты определения семейства Staphylococcaceae, патогенные представители которого приводят к усилению воспаления и аллергических реакций на коже).
Полный текст
Открыть статью на сайте журналаОб авторах
Владимир Петрович Адаскевич
Витебский государственный ордена Дружбы народов медицинский университет
Email: Vitebsk-derma@mail.ru
ORCID iD: 0000-0002-5700-9829
SPIN-код: 3721-9080
доктор медицинских наук, профессор
Белоруссия, ВитебскАлексей Николаевич Городович
Полоцкая центральная городская больница
Email: polotsk.mod@gmail.com
Белоруссия, Полоцк
Денис Владимирович Заславский
Санкт-Петербургский государственный педиатрический медицинский университет
Email: venerology@gmail.com
ORCID iD: 0000-0001-5936-6232
SPIN-код: 5832-9510
доктор медицинских наук, профессор
Россия, Санкт-ПетербургВиталий Александрович Охлопков
Федеральный научно-клинический центр реаниматологии и реабилитологии
Email: vokhlopkov@fnkcrr.ru
ORCID iD: 0000-0002-3515-6027
SPIN-код: 1202-6653
доктор медицинских наук, профессор
Россия, Солнечногорск, д. ЛыткиноИрина Олеговна Смирнова
Санкт-Петербургский государственный университет; Городской кожно-венерологический диспансер
Email: driosmirnova@yandex.ru
ORCID iD: 0000-0001-8584-615X
SPIN-код: 5518-6453
доктор медицинских наук, профессор
Россия, Санкт-Петербург; 192102, Санкт-Петербург, наб. реки Волковки, д. 3Алексей Викторович Таганов
Клиника кожных болезней имени Пьера Волькенштейна
Email: matis87177@yandex.ru
ORCID iD: 0000-0001-5056-374X
SPIN-код: 1191-8991
доктор медицинских наук
Россия, Санкт-ПетербургОльга Борисовна Тамразова
Российский университет дружбы народов имени Патриса Лумумбы
Email: anait_tamrazova@mail.ru
ORCID iD: 0000-0003-3261-6718
SPIN-код: 5476-8497
доктор медицинских наук, профессор
Россия, МоскваИрена Леонидовна Шливко
Приволжский исследовательский медицинский университет
Email: irshlivko@gmail.com
ORCID iD: 0000-0001-7253-7091
SPIN-код: 8301-4815
доктор медицинских наук, профессор
Россия, Нижний НовгородКристина Девиевна Хажомия
Городской кожно-венерологический диспансер
Автор, ответственный за переписку.
Email: christinakhazhomiya@gmail.com
ORCID iD: 0000-0002-2997-6109
SPIN-код: 2796-4870
Россия, 192102, Санкт-Петербург, наб. реки Волковки, д. 3
Список литературы
- Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 2020;8(1):103. doi: 10.1186/s40168-020-00875-0 Corrected and republished from: Microbiome. 2020;8(1):119.
- Merriam-Webster [Internet]. Microbiome definition. Available from: https://www.merriam-webster.com/dictionary/microbiome.
- Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996;4(11):430–435. doi: 10.1016/0966-842x(96)10057-3
- Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
- Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18(Suppl 4):2–4. doi: 10.1111/j.1469-0691.2012.03916.x
- Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118. doi: 10.1126/science.1058709
- Bassler BL. Small talk: Cell-to-cell communication in bacteria. Cell. 2002;109(4):421–424. doi: 10.1016/s0092-8674(02)00749-3
- Frederix M, Downie AJ. Quorum sensing: Regulating the regulators. Adv Microb Physiol. 2011;58:23–80. doi: 10.1016/B978-0-12-381043-4.00002-7
- Huang F, Teng K, Liu Y, et al. Bacteriocins: Potential for human health. Oxid Med Cell Longev. 2021;2021:5518825. doi: 10.1155/2021/5518825
- Manos J. The human microbiome in disease and pathology. APMIS. 2022;130(12):690–705. doi: 10.1111/apm.13225
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi: 10.1038/nature11234
- Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–841. doi: 10.1038/nbt.2942
- Grice EA, Kong HH, Conlan S, et al.; NISC Comparative Sequencing Program. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–1192. doi: 10.1126/science.1171700
- Boyajian JL, Ghebretatios M, Schaly S, et al. Microbiome and human aging: Probiotic and prebiotic potentials in longevity, skin health and cellular senescence. Nutrients. 2021;13(12):4550. doi: 10.3390/nu13124550
- Xu H, Li H. Acne, the skin microbiome, and antibiotic treatment. Am J Clin Dermatol. 2019;20(3):335–344. doi: 10.1007/s40257-018-00417-3
- Daou H, Paradiso M, Hennessy K, Seminario-Vidal L. Rosacea and the microbiome: A systematic review. Dermatol Ther (Heidelb). 2021;11(1):1–12. doi: 10.1007/s13555-020-00460-1
- Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen. 2022;42(1):26. doi: 10.1186/s41232-022-00212-y
- Smirnova IO, Khazhomiya KD, Ptashnikova PD, Smirnova ON. Skin microbiome and possibilities of bacteriotherapy (on example of skin aging and atopic dermatitis). Medical alphabet. 2023;(24):20–26. doi: 10.33667/2078-5631-2023-24-20-26
- Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680. doi: 10.1126/scitranslmed.aah4680
- Blanchet-Réthoré S, Bourdès V, Mercenier A, et al. Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clin Cosmet Investig Dermatol. 2017;10:249–257. doi: 10.2147/CCID.S135529
- Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol. 2017;137(6):1213–1214. doi: 10.1016/j.jid.2016.11.045
- Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–155. doi: 10.1038/nrmicro.2017.157
- Oh J, Byrd AL, Deming C, Conlan S; NISC Comparative Sequencing Program. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. doi: 10.1038/nature13786
- Pistone D, Meroni G, Panelli S, et al. A Journey on the skin microbiome: Pitfalls and opportunities. Int J Mol Sci. 2021;22(18):9846. doi: 10.3390/ijms22189846
- Findley K, Oh J, Yang J, et al.; NIH Intramural Sequencing Center Comparative Sequencing Program. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–370. doi: 10.1038/nature12171
- Gribbon EM, Cunliffe WJ, Holland KT. Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol. 1993;139(8):1745–1751. doi: 10.1099/00221287-139-8-1745
- Wu G, Zhao H, Li C, et al. Genus-wide comparative genomics of malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 2015;11(11):e1005614. doi: 10.1371/journal.pgen.1005614
- Eyerich S, Eyerich K, Traidl-Hoffmann C, Biedermann T. Cutaneous barriers and skin immunity: Differentiating a connected network. Trends Immunol. 2018;39(4):315–327. doi: 10.1016/j.it.2018.02.004
- Luger T, Amagai M, Dreno B, et al. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci. 2021;102(3):142–157. doi: 10.1016/j.jdermsci.2021.04.007
- Dimitriu PA, Iker B, Malik K, et al. New insights into the intrinsic and extrinsic factors that shape the human skin microbiome. mBio. 2019;10(4):e00839-19. doi: 10.1128/mBio.00839-19
- Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. Microbiome. 2021;9:125. doi: 10.1186/s40168-021-01062-5
- Oh J, Byrd AL, Park M; NISC Comparative Sequencing Program. Temporal stability of the human skin microbiome. Cell. 2016;165(4):854–866. doi: 10.1016/j.cell.2016.04.008
- Kustner O. Beitrag zur lehre von der puerperalen infection der neugeborenen. Arch Gynakol. 1877;11:256–263. doi: 10.1007/BF01845161
- Escherich T. The intestinal bacteria of the neonate and breast-fed infant. Rev Infect Dis. 1885;11:352–356. doi: 10.1093/clinids/11.2.352
- Funkhouser LJ, Bordenstein SR. Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 2013;11:e1001631. doi: 10.1371/journal.pbio.1001631
- Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Trans Med. 2014;6(237):237ra65-ra65. doi: 10.1126/scitranslmed.3008599
- Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. doi: 10.1038/srep23129
- Molina NM, Sola-Leyva A, Haahr T, et al. Analysing endometrial microbiome: methodological considerations and recommendations for good practice. Hum Reprod. 2021;36(4):859–879. doi: 10.1093/humrep/deab009
- Rackaityte E, Halkias J, Fukui EM, et al. Corroborating evidence refutes batch effect as explanation for fetal bacteria. Microbiome. 2021;9(1):10. doi: 10.1186/s40168-020-00948-0
- Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science. 2020;368(6491):604–607. doi: 10.1126/science.aba0478
- Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351(6279):1296–1302. doi: 10.1126/science.aad2571
- Collier F, Ponsonby AL, O’Hely M, et al. Naïve regulatory T cells in infancy: Associations with perinatal factors and development of food allergy. Allergy. 2019;74:1760–1768. doi: 10.1111/all.13822
- Alam MJ, Xie L, Yap YA, et al. Manipulating microbiota to treat atopic dermatitis: functions and therapies. Pathogens. 2022;11(6):642. doi: 10.3390/pathogens11060642
- Kalliomäki M, Salminen S, Poussa T, et al. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet. 2003;361:1869–1871. doi: 10.1016/S0140-6736(03)13490-3
- Wickens K, Barthow C, Mitchell EA, et al. Maternal supplementation alone with lactobacillus rhamnosus HN001 during pregnancy and breastfeeding does not reduce infant eczema. Pediatr Allergy Immunol. 2018;29(3):296–302. doi: 10.1111/pai.12874
- Darlenski R, Fluhr JW. How do the skin barrier and microbiome adapt to the extra-uterine environment after birth? Implications for the clinical practice. Int J Cosmet Sci. 2023;45(3):288–298. doi: 10.1111/ics.12844
- Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol. 2021;12:683022. doi: 10.3389/fimmu.2021.683022
- Mueller NT, Differding MK, Sun H, et al. Maternal bacterial engraftment in multiple body sites of cesarean section born neonates after vaginal seeding-a randomized controlled trial. mBio. 2023;14(3):e0049123. doi: 10.1128/mbio.00491-23
- Ghori NU, Mullally CA, Nicol MP, et al. Skin-microbiome assembly in preterm infants during the first three weeks of life and impact of topical coconut oil application. Int J Mol Sci. 2023;24(23):16626. doi: 10.3390/ijms242316626
- Yao Y, Cai X, Ye Y, et al. The role of microbiota in infant health: From early life to adulthood. Front Immunol. 2021;12:708472. doi: 10.3389/fimmu.2021.708472
- Mathieu A, Delmont TO, Vogel TM, et al. Life on human surfaces: skin metagenomics. PLoS One. 2013;8(6):e65288. doi: 10.1371/journal.pone.0065288
- Haykal D, Cartier H, Dréno B. Dermatological health in the light of skin microbiome evolution. J Cosmet Dermatol. 2024;23(12):3836–3846. doi: 10.1111/jocd.16557
- Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131:2026–2032. doi: 10.1038/jid.2011.168
- Park J, Schwardt NH, Jo J, et al. Shifts in the skin bacterial and fungal communities of healthy children transitioning through puberty. J Invest Dermatol. 2022;142(1):212–219. doi: 10.1016/j.jid.2021.04.034
- Somboonna N, Wilantho A, Srisuttiyakorn C, et al. Bacterial communities on facial skin of teenage and elderly Thai females. Arch Microbiol. 2017;199:1035–1042. doi: 10.1007/s00203-017-1375-0
- Jugé R, Rouaud-Tinguely P, Breugnot J, et al. Shift in skin microbiota of Western European women across aging. J Appl Microbiol. 2018;125(3):907–916. doi: 10.1111/jam.13929
- Prohic A, Simic D, Sadikovic TJ, Krupalija-Fazlic M. Distribution of Malassezia species on healthy human skin in Bosnia and Herzegovina: Correlation with body part, age and gender. Iran J Microbiol. 2014;6(4):253–262.
- Howard B, Bascom CC, Hu P, et al. Aging-associated changes in the adult human skin microbiome and the host factors that affect skin microbiome composition. J Invest Dermatol. 2022;142(7):1934–1946.e21. doi: 10.1016/j.jid.2021.11.029
- Kim HJ, Oh HN, Park T, et al. Aged related human skin microbiome and mycobiome in Korean women. Sci Rep. 2022;12(1):2351. doi: 10.1038/s41598-022-06189-5
- Zhou W, Fleming E, Legendre G, et al. Skin microbiome attributes associate with biophysical skin ageing. Exp Dermatol. 2023;32(9):1546–1556. doi: 10.1111/exd.14863
- Larson PJ, Zhou W, Santiago A, et al. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat Aging. 2022;2(10):941–955. doi: 10.1038/s43587-022-00287-9
- Huang S, Haiminen N, Carrieri AP, et al. Human skin, oral, and gut microbiomes predict chronological age. Msystems. 2020;5:e00630-19. doi: 10.1128/mSystems.00630-19
- Tsai WH, Chou CH, Chiang YJ, et al. Regulatory effects of Lactobacillus plantarum-GMNL6 on human skin health by improving skin microbiome. Int J Med Sci. 2021;18(5):1114–1120. doi: 10.7150/ijms.51545
- Bromfield JI, Hugenholtz P, Frazer IH, et al. Targeting Staphylococcus aureus dominated skin dysbiosis in actinic keratosis to prevent the onset of cutaneous squamous cell carcinoma: Outlook for future therapies? Front Oncol. 2023;13:1091379. doi: 10.3389/fonc.2023.1091379
- Wood DL, Lachner N, Tan JM, et al. A natural history of actinic keratosis and cutaneous squamous cell carcinoma microbiomes. Mbio. 2018;9(5):e01432-18 doi: 10.1128/mBio.01432-18
- Krueger A, Mohamed A, Kolka CM, et al. Skin cancer-associated S. aureus strains can induce DNA damage in human keratinocytes by downregulating DNA repair and promoting oxidative stress. Cancers. 2022;14(9):2143. doi: 10.3390/cancers14092143
- Khmaladze I, Butler E, Fabre S, Gillbro JM. Lactobacillus reuteri DSM 17938: A comparative study on the effect of probiotics and lysates on human skin. Exp Dermatol. 2019;28(7):822–828. doi: 10.1111/exd.13950
- Misery L, Weisshaar E, Brenaut E, et al. Pathophysiology and management of sensitive skin: Position paper from the special interest group on sensitive skin of the International Forum for the Study of Itch (IFSI). J Eur Acad Dermatol Venereol. 2020;34(2):222–229. doi: 10.1111/jdv.16000
- Legeas C, Misery L, Fluhr JW, et al. Proposal for cut-off scores for sensitive skin on sensitive scale-10 in a group of adult women. Acta Derm Venereol. 2021;101(1):adv00373. doi: 10.2340/00015555-3741
- Pons-Guiraud A. Sensitive skin: A complex and multifactorial syndrome. J Cosmet Dermatol. 2004;3(3):145–148. doi: 10.1111/j.1473-2130.2004.00082.x
- Do LH, Azizi N, Maibach H. Sensitive skin syndrome: An update. Am J Clin Dermatol. 2020;21(3):401–409. doi: 10.1007/s40257-019-00499-7
- Yan S, Zhao J, Han Y, et al. The challenges in investigating the pathogenesis of sensitive skin by noninvasive measurements: A systematic review. Clin Cosmet Investig Dermatol. 2023;16:237–251. doi: 10.2147/CCID.S392925
- Keum HL, Kim H, Kim HJ, et al. Structures of the skin microbiome and mycobiome depending on skin sensitivity. Microorganisms. 2020;8(7):1032. doi: 10.3390/microorganisms8071032
- Smith W. Comparative effectiveness of α-hydroxy acids on skin properties. Int J Cosmet Sci. 1996;18:75–83. doi: 10.1111/j.1467-2494.1996.tb00137.x
- Guéniche A, Bastien P, Ovigne JM, et al. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp Dermatol. 2010;19:1–8. doi: 10.1111/j.1600-0625.2009.00932.x
- Sultana R, McBain AJ, O’Neill CA. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl Environ Microbiol. 2013;79:4887–4894. doi: 10.1128/AEM.00982-13
- Iebba V, Totino V, Gagliardi A, et al. Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiol. 2016;39(1):1–12.
- Park T, Kim HJ, Myeong NR, et al. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol. 2017;26(9):835–838. doi: 10.1111/exd.13293
- Olejniczak-Staruch I, Ciążyńska M, Sobolewska-Sztychny D, et al. Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. Int J Mol Sci. 2021;22(8):3998. doi: 10.3390/ijms22083998
- Colucci R, Moretti S. Implication of human bacterial gut microbiota on immune-mediated and autoimmune dermatological diseases and their comorbidities: A narrative review. Dermatol Ther (Heidelb). 2021;11(2):363–384. doi: 10.1007/s13555-021-00485-0
- Barinova AN, Gelezhe KA, Zamyatina SE, et al. Atopic dermatitis. Interdisciplinary approach to diagnosis and treatment. Manual for doctors. Moscow; 2024. 288 p. (In Russ.) doi: 10.33029/9704-7812-7-ADM-2024-1-288 EDN: TNGELX
- Bylund S, Kobyletzki LB, Svalstedt M, Svensson А. Prevalence and incidence of atopic dermatitis: A systematic review. Acta Derm Venereol. 2020;100(12):adv00160. doi: 10.2340/00015555-3510
- Mallol J, Crane J, von Mutius E, et al., ISAAC Phase Three Study Group. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A global synthesis. Allergol Immunopathol. 2013;41:73–85. doi: 10.1016/j.aller.2012.03.001
- Zaslavsky DV, Barinova AN. Skin microbiome in atopic dermatitis and features of various background skin care. Medical council. 2018;(2):170–176. doi: 10.21518/2079-701X-2018-2-170-176 EDN: YPSZYZ
- Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol Sci. 2021;22(8):4130. doi: 10.3390/ijms22084130
- Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The human skin microbiome in selected cutaneous diseases. Front Cell Infect Microbiol. 2022;12:834135. doi: 10.3389/fcimb.2022.834135
- Paller AS, Kong HH, Seed P, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26–35. doi: 10.1016/j.jaci.2018.11.015 Corrected and republished from: J Allergy Clin Immunol. 2019;143(4):1660.
- Meylan P, Lang C, Mermoud S, et al. Skin colonization by staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Investig Dermatol. 2017;137:2497–2504. doi: 10.1016/j.jid.2017.07.834
- Kennedy EA, Connolly J, Hourihane JO, et al. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1year. J Allergy Clin Immunol. 2017;139:166–172. doi: 10.1016/j.jaci.2016.07.029
- Seite S, Flores GE, Henley JB, et al. Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol. 2014;13(11):1365–1372.
- Koh LF, Ong RY, Common JE. Skin microbiome of atopic dermatitis. Allergol Int. 2022;71(1):31–39. doi: 10.1016/j.alit.2021.11.001
- Neumann AU, Reiger M, Bhattacharyya M, et al. Microbiome correlates of success of treatment of atopic dermatitis with the JAK/SYK inhibitor ASN002. Allergy. 2019;74:S106–S112.
- Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol. 2024:S0091-6749(24)00501-3. doi: 10.1016/j.jaci.2024.04.029
- Dewi DA, Perdiyana A, Wiliantari NM, et al. Managing the skin microbiome as a new bacteriotherapy for inflammatory atopic dermatitis. Cureus. 2023;15(11):e48803. doi: 10.7759/cureus.48803
- Kim K, Jang H, Kim E, et al. Recent advances in understanding the role of the skin microbiome in the treatment of atopic dermatitis. Exp Dermatol. 2023;32(12):2048–2061. doi: 10.1111/exd.14940
- Kobayashi T, Glatz M, Horiuchi K, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–766. doi: 10.1016/j.immuni.2015.03.014
- Khadka VD, Key FM, Romo-González C, et al. The skin microbiome of patients with atopic dermatitis normalizes gradually during treatment. Front Cell Infect Microbiol. 2021;11:720674. doi: 10.3389/fcimb.2021.720674
- Nakatsuji T, Cheng JY, Gallo RL. Mechanisms for control of skin immune function by the microbiome. Curr Opin Immunol. 2021;72:324–330. doi: 10.1016/j.coi.2021.09.001
- Christensen IB, Vedel C, Clausen ML, et al. Targeted screening of lactic acid bacteria with antibacterial activity toward staphylococcus aureus clonal complex type 1 associated with atopic dermatitis. Front Microbiol. 2021;12:733847. doi: 10.3389/fmicb.2021.733847
- Peral MC, Martinez MA, Valdez JC. Bacteriotherapy with Lactobacillus plantarum in burns. Int Wound J. 2009;6(1):73–81. doi: 10.1111/j.1742-481X.2008.00577.x
- Mohtashami M, Mohamadi M, Azimi-Nezhad M, et al. Lactobacillus bulgaricus and Lactobacillus plantarum improve diabetic wound healing through modulating inflammatory factors. Biotechnol Appl Biochem. 2021;68(6):1421–1431. doi: 10.1002/bab.2064
- Ong JS, Taylor TD, Yong CC, et al. Lactobacillus plantarum USM8613 aids in wound healing and suppresses Staphylococcus aureus infection at wound sites. Probiotics Antimicrob Proteins. 2020;12(1):125–137. doi: 10.1007/s12602-018-9505-9
- Pihurov M, Păcularu-Burada B, Cotârleţ M, et al. Novel insights for metabiotics production by using artisanal probiotic cultures. Microorganisms. 2021;9(11):2184. doi: 10.3390/microorganisms9112184
- Jang HJ, Lee NK, Paik HD. A narrative review on the advance of probiotics to metabiotics. J Microbiol Biotechnol. 2024;34(3):487–494. doi: 10.4014/jmb.2311.11023
- Oleskin AV, Shenderov BA. Probiotics and psychobiotics: The role of microbial neurochemicals. Probiotics Antimicrob Proteins. 2019;11:1071–1085. doi: 10.1007/s12602-019-09583-0
- Sharma M, Shukla G. Metabiotics: One step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front Microbiol. 2016;7:1940. doi: 10.3389/fmicb.2016.01940
- Di Lodovico S, Gasparri F, di Campli E, et al. Prebiotic combinations effects on the colonization of staphylococcal skin strains. Microorganisms. 2020;9(1):37. doi: 10.3390/microorganisms9010037
- Bustamante M, Oomah BD, Oliveira WP, et al. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol (Praha). 2020;65(2):245–264. doi: 10.1007/s12223-019-00759-3
- Li M, Mao J, Diaz I, et al. Multi-omic approach to decipher the impact of skincare products with pre/postbiotics on skin microbiome and metabolome. Front Med (Lausanne). 2023;10:1165980. doi: 10.3389/fmed.2023.1165980
- Li M, Fan A, Mao J, et al. The prebiotic effect of triple biotic technology on skin health. J Cosmet Cermatol Sci Appl. 2021;11:304–319. doi: 10.4236/jcdsa.2021.114025
- Zaslavsky DV, Taganov AV, Zaslavskaya ED, Kozlova DV. Experience of usage of the lipid restoring cream LE SANTI containing biotic complex (Biotic Complex) in children with mild and moderate atopic dermatitis. Dermatovenerology Cosmetology. 2023;9(3):280–290. doi: 10.34883/PI.2023.9.3.015
- Zaslavsky DV, Taganov AV, Pashkovskay O, Kozlova DV. Experience of usage of the innovational biotic complex as part of lipidrestoring cream in children with DRY skin. In: 18th EADV Spring Symposium. European Academy of Dermatology and Venereology; 2023. Р. 447. EDN: NXUKUU
- Zaslavsky DV, Kozlova DV, Taganov AV. The experience of the usage of lipid restoring cream (biotic complex with lactobacillus plantarum heal 19, oligosaccharide and inulin) in combined therapy for children with atopic dermatitis. In: 25th World Congress of Dermatology, Singapore, 03-08 July; 2023. Р 20382. EDN: YOBDWV
- Zaslavsky DV, Taganov AV, Molochkov AV, et al. Change of epidermal barrier parameters and biomechanical parameters of the skin in children with atopic dermatitis during the use of a lipid-restoring cream containing biotic complex. Medical alphabet. 2024;(9):102–108. doi: 10.33667/2078-5631-2024-9-102-108 EDN: LMTRNM
- Zaslavsky DV, Barinova AN. A new strategy for basic therapy moisturizing creams in atopic dermatitis: “emollient plus”. Dermatovenerologiya. Kosmetologiya. 2019;5(1):69–79. EDN: ZCVZRY
Дополнительные файлы
