Unconditional Convergence for Wavelet Frame Expansions
- 作者: Lebedeva E.A.1
-
隶属关系:
- St. Petersburg State University, St. Petersburg Polytechnical University
- 期: 卷 234, 编号 3 (2018)
- 页面: 357-361
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241884
- DOI: https://doi.org/10.1007/s10958-018-4012-9
- ID: 241884
如何引用文章
详细
Let \( {\left\{{\psi}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) and \( {\left\{{\tilde{\psi}}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that
\( \underset{0}{\overset{\infty }{\int }}\eta (x)\log \left(1+x\right) dx<\infty, \)![]()
and let |ψ(x)|, \( \left|\tilde{\psi}(x)\right|\le \eta (x) \). Then the series \( \sum \limits_{j,k\in \mathrm{\mathbb{Z}}}\left(f,{\tilde{\psi}}_{j,k}\right){\psi}_{j,k} \) converges unconditionally in Lp(ℝ), 1 < p < ∞.
作者简介
E. Lebedeva
St. Petersburg State University, St. Petersburg Polytechnical University
编辑信件的主要联系方式.
Email: ealebedeva2004@gmail.com
俄罗斯联邦, St. Petersburg
补充文件
