Unconditional Convergence for Wavelet Frame Expansions
- Authors: Lebedeva E.A.1
-
Affiliations:
- St. Petersburg State University, St. Petersburg Polytechnical University
- Issue: Vol 234, No 3 (2018)
- Pages: 357-361
- Section: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241884
- DOI: https://doi.org/10.1007/s10958-018-4012-9
- ID: 241884
Cite item
Abstract
Let \( {\left\{{\psi}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) and \( {\left\{{\tilde{\psi}}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that
\( \underset{0}{\overset{\infty }{\int }}\eta (x)\log \left(1+x\right) dx<\infty, \)![]()
and let |ψ(x)|, \( \left|\tilde{\psi}(x)\right|\le \eta (x) \). Then the series \( \sum \limits_{j,k\in \mathrm{\mathbb{Z}}}\left(f,{\tilde{\psi}}_{j,k}\right){\psi}_{j,k} \) converges unconditionally in Lp(ℝ), 1 < p < ∞.
About the authors
E. A. Lebedeva
St. Petersburg State University, St. Petersburg Polytechnical University
Author for correspondence.
Email: ealebedeva2004@gmail.com
Russian Federation, St. Petersburg
Supplementary files
