Unconditional Convergence for Wavelet Frame Expansions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let \( {\left\{{\psi}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) and \( {\left\{{\tilde{\psi}}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that

\( \underset{0}{\overset{\infty }{\int }}\eta (x)\log \left(1+x\right) dx<\infty, \)

and let |ψ(x)|, \( \left|\tilde{\psi}(x)\right|\le \eta (x) \). Then the series \( \sum \limits_{j,k\in \mathrm{\mathbb{Z}}}\left(f,{\tilde{\psi}}_{j,k}\right){\psi}_{j,k} \) converges unconditionally in Lp(ℝ), 1 < p < ∞.

About the authors

E. A. Lebedeva

St. Petersburg State University, St. Petersburg Polytechnical University

Author for correspondence.
Email: ealebedeva2004@gmail.com
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature