Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 234, № 3 (2018)

Article

On Construction of Anticliques for Noncommutative Operator Graphs

Amosov G., Mokeev A.

Аннотация

In this paper, we construct anticliques for noncommutative operator graphs generated by generalized Pauli matrices. It is shown that application of entangled states for the construction of the code space K allows one to substantially increase the dimension of a noncommutative operator graph for which the projection on K is an anticlique.

Journal of Mathematical Sciences. 2018;234(3):269-275
pages 269-275 views

On the Radius of Starlikeness for Harmonic Mappings

Bagapsh A.

Аннотация

In this paper, we obtain a criterion of starlikeness for the image of the disk with center at the origin and radius r ∈ (0, 1) under a univalent harmonic mapping by a function that maps the unit disk onto a convex domain. This criterion is similar to the criterion of image convexity, and it is expressed in terms of starlikeness in one direction. As a corollary, we obtain a new estimate for the radius of starlikeness of the class of univalent harmonic mappings that take the unit disk onto a convex domain.

Journal of Mathematical Sciences. 2018;234(3):276-281
pages 276-281 views

K-Closedness for Weighted Hardy Spaces on the Torus ????2

Borovitskiy V.

Аннотация

We obtain certain sufficient conditions under which the couple of weighted Hardy spaces

\( \left({H}_r\left({w}_1\left(\cdot, \cdot \right)\right),{H}_s\left({w}_2\left(\cdot, \cdot \right)\right)\right) \)

on the two-dimensional torus ????2 is K-closed in the couple (Lr(w1( · , · )), Ls(w2( · , · ))). For 0 < r < s < 1, the condition w1, w2A suffices (A is the Muckenhoupt condition over rectangles). For 0 < r < 1 < s < ∞, it suffices that w1 ∈ A and w2 ∈ As. For 1 < r < s = ∞, we assume that the weights are of the form wi(z1, z2) = ai(z1)ui(z1, z2)bi(z2), and then the following conditions suffice: u1Ap, u2 ∈ A1, \( {u}_2^p{u}_1\in {\mathrm{A}}_{\infty } \) , and log ai, log bi ∈ BMO. The last statement generalizes the previously known result for the case of ui ≡ 1, i = 1, 2. Finally, for r = 1, s = ∞, the conditions w1, w2 ∈ A1 and w1w2 ∈ A suffice.

Journal of Mathematical Sciences. 2018;234(3):282-289
pages 282-289 views

On an Equivalent Norm on the Space BMO

Vasilyev I., Tselishchev A.

Аннотация

We extend the inequality proved by S. V. Bochkarev to a larger class of convolution operators assuming that the Fourier transforms of the kernels of these operators satisfy certain conditions in the spirit of the Hörmander–Mikhlin multiplier theorem. Therefore, we give a new characterization of BMO.

Journal of Mathematical Sciences. 2018;234(3):290-302
pages 290-302 views

Sharp Estimates of Linear Approximations by Nonperiodic Splines in Terms of Linear Combinations of Moduli of Continuity

Vinogradov O., Gladkaya A.

Аннотация

Assume that σ > 0, r, μ ???? ℕ, μ ≥ r + 1, r is odd, p ???? [1,+], and \( f\kern0.5em \in \kern0.5em {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) \). We construct linear operators Xσ,r,μ whose values are splines of degree μ and of minimal defect with knots \( \frac{k\pi}{\sigma },k\in \mathrm{\mathbb{Z}} \), such that

\( {\displaystyle \begin{array}{l}{\left\Vert f-{X}_{\sigma, r,u}(f)\right\Vert}_p\le {\left(\frac{\pi }{\sigma}\right)}^r\left\{\frac{A_r,0}{2}\left.{\upomega}_1\right|{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p+\sum \limits_{v=1}^{u-r-1}{A}_{r,v}{\omega}_v{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p\right\}\\ {}\kern9em +{\left(\frac{\pi }{\sigma}\right)}^r\left(\frac{{\mathcal{K}}_r}{\pi^r}-\sum \limits_{v=0}^{u-r-1}{2}^v{A}_{r,v}\right){2}^{r-\mu }{\omega}_{\mu -r}{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p,\end{array}} \) where for p = 1, . . . ,+∞, the constants cannot be reduced on the class \( {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) \). Here \( {\mathcal{K}}_r=\frac{4}{\pi}\sum \limits_{l=0}^{\infty}\frac{{\left(-1\right)}^{l\left(r+1\right)}}{{\left(2l+1\right)}^{r+1}} \) are the Favard constants, the constants Ar,ν are constructed explicitly, and ωv is a modulus of continuity of order ν. As a corollary, we get the sharp Jackson type inequality

\( {\left\Vert f-{X}_{\sigma, r,\mu }(f)\right\Vert}_p\le \frac{{\mathcal{K}}_r}{2{\sigma}^r}{\omega}_1{\left({f}^{(r)},\frac{\uppi}{\sigma}\right)}_p. \)

Journal of Mathematical Sciences. 2018;234(3):303-317
pages 303-317 views

A Sufficient Condition for the Similarity of a Polynomially Bounded Operator to a Contraction

Gamal’ M.

Аннотация

Let T be a polynomially bounded operator and let ℳ be its invariant subspace. Assume that PM⊥T |M⊥\( {\left.{P}_{{\mathrm{\mathcal{M}}}^{\perp }}T\right|}_{{\mathrm{\mathcal{M}}}^{\perp }} \) is similar to a contraction, while θ(T|) = 0, where θ is a finite product of Blaschke products with simple zeros satisfying the Carleson interpolating condition (a Carleson–Newman product). Then T is similar to a contraction. It is mentioned that Le Merdy’s example shows that the assumption of polynomial boundedness cannot be replaced by the assumption of power boundedness.

Journal of Mathematical Sciences. 2018;234(3):318-329
pages 318-329 views

Estimates of Functions, Orthogonal to Piecewise Constant Functions, in Terms of the Second Modulus of Continuity

Ikhsanov L.

Аннотация

The paper is devoted to the problem of finding the exact constant \( {W}_2^{\ast } \) in the inequality ‖f‖ ≤ K ⋅ ω2(f, 1) for bounded functions f with the property

\( \underset{k}{\overset{k+1}{\int }}f(x) dx=0,\kern0.5em k\in \mathrm{\mathbb{Z}}. \)

Our approach allows us to reduce the known range for the desired constant as well as the set of functions involved in the extremal problem for finding the constant in question. It is shown that \( {W}_2^{\ast } \) also turns out to be the exact constant in a related Jackson–Stechkin type inequality.

Journal of Mathematical Sciences. 2018;234(3):330-337
pages 330-337 views

To the Theory of Interpolation of Operators That are Bounded on Cones in Weighted Spaces of Numerical Sequences. II

Kaplitskii V., Dronov A.

Аннотация

We generalize earlier results on the interpolation property for triples of cones (Q0, Q1, Q) (where Q0, Q1, and Q are cones in weighted spaces of numerical sequences) with respect to some triple of weighted spaces of numerical sequences.

Journal of Mathematical Sciences. 2018;234(3):338-342
pages 338-342 views

An Embedding Theorem with Anisotropy for Vector Fields

Kislyakov S., Maksimov D.

Аннотация

A generalization of some recent results of D. M. Stolyarov and the authors is proved.

Journal of Mathematical Sciences. 2018;234(3):343-349
pages 343-349 views

To the Theory of C0-Operator Orthogonal Polynomials

Kostin V., Nebol’sina M.

Аннотация

Operator orthogonal polynomials are considered whose arguments are generators of strongly continuous semigroups of transformations of class C0 acting in a Banach space. Earlier such polynomials were considered by the authors in the case of the Chebyshev polynomials of the first and second kind. In this paper, more general classes of operator orthogonal polynomials are considered, which include the Jacobi and Aptekarev polynomials. Integral representations of operator fractional-rational functions and also of Bessel operator-valued functions of an imaginary argument are presented.

Journal of Mathematical Sciences. 2018;234(3):350-356
pages 350-356 views

Unconditional Convergence for Wavelet Frame Expansions

Lebedeva E.

Аннотация

Let \( {\left\{{\psi}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) and \( {\left\{{\tilde{\psi}}_{j,k}\right\}}_{\left(j,k\right)\in {\mathrm{\mathbb{Z}}}^2} \) be dual wavelet frames in L2(ℝ), let η be an even, bounded, decreasing on [0, ∞) function such that

\( \underset{0}{\overset{\infty }{\int }}\eta (x)\log \left(1+x\right) dx<\infty, \)

and let |ψ(x)|, \( \left|\tilde{\psi}(x)\right|\le \eta (x) \). Then the series \( \sum \limits_{j,k\in \mathrm{\mathbb{Z}}}\left(f,{\tilde{\psi}}_{j,k}\right){\psi}_{j,k} \) converges unconditionally in Lp(ℝ), 1 < p < ∞.

Journal of Mathematical Sciences. 2018;234(3):357-361
pages 357-361 views

On the Existence of Angular Boundary Values for Polyharmonic Functions in the Unit Ball

Mazalov M.

Аннотация

We study boundary properties of polyharmonic functions. In particular, a criterion is obtained (in terms of the radial growth of the derivative) for the existence a.e. of angular boundary values for a polyharmonic function bounded in the unit ball.

Journal of Mathematical Sciences. 2018;234(3):362-368
pages 362-368 views

Generalized Pointwise Hölder Type Conditions of Order Less Than Two for an Analytic Function and Its Modulus

Medvedev A.

Аннотация

The results of a recent paper by A. V. Vasin, S. V. Kislyakov, and the author on the relationship between the local boundary smoothness of an analytic function and local boundary smoothness of its modulus are extended to the case of generalized pointwise Hölder type conditions of order between one and two.

Journal of Mathematical Sciences. 2018;234(3):369-372
pages 369-372 views

Extremal Problem for the Area of the Image of a Disk

Salimov R., Klishchuk B.

Аннотация

We study metric properties of ring Q-homeomorphisms with respect to the p-modulus, p > 2, in the complex plane and establish lower bounds for the areas of disks. An extremal problem concerning minimization of the area functional is also solved.

Journal of Mathematical Sciences. 2018;234(3):373-380
pages 373-380 views

Smoothness of a Holomorphic Function and Its Modulus on the Boundary of a Polydisk

Shirokov N.

Аннотация

We prove that if a function f is holomorphic in the polydisk ????n, n ≥ 2, f is continuous in \( \overline{{\mathbb{D}}^n} \), f(z) ≠ 0, z ∈ ????n, and |f| belongs to the α-Hölder class, 0 < α < 1, on the boundary of ????n, then f belongs to the \( \left(\frac{\alpha }{2}-\varepsilon \right) \)-Hölder class on \( \overline{{\mathbb{D}}^n} \) for any ε > 0.

Journal of Mathematical Sciences. 2018;234(3):381-383
pages 381-383 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».