Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory
- Авторы: Vlasov V.V.1, Rautian N.A.1
-
Учреждения:
- M. V. Lomonosov Moscow State University
- Выпуск: Том 233, № 4 (2018)
- Страницы: 555-577
- Раздел: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241587
- DOI: https://doi.org/10.1007/s10958-018-3943-5
- ID: 241587
Цитировать
Аннотация
We study the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in Hilbert spaces and provide a spectral analysis of operator functions that are symbols of the specified equations. These equations represent an abstract form of linear partial integrodifferential equations arising in viscoelasticity theory and other important applications. For the said integrodifferential equations, we obtain well-posedness results in weighted Sobolev spaces of vector functions defined on the positive semiaxis and valued in a Hilbert space. For the symbols of the said equations, we find the localization and the structure of the spectrum.
Об авторах
V. Vlasov
M. V. Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vicvvlasov@rambler.ru
Россия, Moscow
N. Rautian
M. V. Lomonosov Moscow State University
Email: vicvvlasov@rambler.ru
Россия, Moscow
Дополнительные файлы
