Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in Hilbert spaces and provide a spectral analysis of operator functions that are symbols of the specified equations. These equations represent an abstract form of linear partial integrodifferential equations arising in viscoelasticity theory and other important applications. For the said integrodifferential equations, we obtain well-posedness results in weighted Sobolev spaces of vector functions defined on the positive semiaxis and valued in a Hilbert space. For the symbols of the said equations, we find the localization and the structure of the spectrum.

Авторлар туралы

V. Vlasov

M. V. Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: vicvvlasov@rambler.ru
Ресей, Moscow

N. Rautian

M. V. Lomonosov Moscow State University

Email: vicvvlasov@rambler.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018