Well-Posedness and Spectral Analysis of Integrodifferential Equations Arising in Viscoelasticity Theory


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the well-posedness of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in Hilbert spaces and provide a spectral analysis of operator functions that are symbols of the specified equations. These equations represent an abstract form of linear partial integrodifferential equations arising in viscoelasticity theory and other important applications. For the said integrodifferential equations, we obtain well-posedness results in weighted Sobolev spaces of vector functions defined on the positive semiaxis and valued in a Hilbert space. For the symbols of the said equations, we find the localization and the structure of the spectrum.

作者简介

V. Vlasov

M. V. Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vicvvlasov@rambler.ru
俄罗斯联邦, Moscow

N. Rautian

M. V. Lomonosov Moscow State University

Email: vicvvlasov@rambler.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018