On the Semiclassical Analysis of the Ground State Energy of the Dirichlet Pauli Operator in Non-Simply Connected Domains


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semiclassical parameter. We show that the ground state energy of the Pauli operator is exponentially small as the semiclassical parameter tends to zero and estimate the decay rate. This extends our recent results discussing a recent paper by Ekholm–Kovařík–Portmann, including non-simply connected domains.

About the authors

B. Helffer

Université de Nantes; Université Paris-Sud

Author for correspondence.
Email: bernard.helffer@univ-nantes.fr
France, 2 rue de la Houssinière, Nantes, 44322; 15 Rue Georges Clemenceau, Orsay, 91400

M. Persson Sundqvist

Lund University

Email: bernard.helffer@univ-nantes.fr
Sweden, Lund, 221 00

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC