On the Semiclassical Analysis of the Ground State Energy of the Dirichlet Pauli Operator in Non-Simply Connected Domains


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semiclassical parameter. We show that the ground state energy of the Pauli operator is exponentially small as the semiclassical parameter tends to zero and estimate the decay rate. This extends our recent results discussing a recent paper by Ekholm–Kovařík–Portmann, including non-simply connected domains.

作者简介

B. Helffer

Université de Nantes; Université Paris-Sud

编辑信件的主要联系方式.
Email: bernard.helffer@univ-nantes.fr
法国, 2 rue de la Houssinière, Nantes, 44322; 15 Rue Georges Clemenceau, Orsay, 91400

M. Persson Sundqvist

Lund University

Email: bernard.helffer@univ-nantes.fr
瑞典, Lund, 221 00

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017