On the Semiclassical Analysis of the Ground State Energy of the Dirichlet Pauli Operator in Non-Simply Connected Domains
- 作者: Helffer B.1,2, Persson Sundqvist M.3
-
隶属关系:
- Université de Nantes
- Université Paris-Sud
- Lund University
- 期: 卷 226, 编号 4 (2017)
- 页面: 531-544
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/240014
- DOI: https://doi.org/10.1007/s10958-017-3546-6
- ID: 240014
如何引用文章
详细
We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semiclassical parameter. We show that the ground state energy of the Pauli operator is exponentially small as the semiclassical parameter tends to zero and estimate the decay rate. This extends our recent results discussing a recent paper by Ekholm–Kovařík–Portmann, including non-simply connected domains.
作者简介
B. Helffer
Université de Nantes; Université Paris-Sud
编辑信件的主要联系方式.
Email: bernard.helffer@univ-nantes.fr
法国, 2 rue de la Houssinière, Nantes, 44322; 15 Rue Georges Clemenceau, Orsay, 91400
M. Persson Sundqvist
Lund University
Email: bernard.helffer@univ-nantes.fr
瑞典, Lund, 221 00
补充文件
