On the Semiclassical Analysis of the Ground State Energy of the Dirichlet Pauli Operator in Non-Simply Connected Domains


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semiclassical parameter. We show that the ground state energy of the Pauli operator is exponentially small as the semiclassical parameter tends to zero and estimate the decay rate. This extends our recent results discussing a recent paper by Ekholm–Kovařík–Portmann, including non-simply connected domains.

Sobre autores

B. Helffer

Université de Nantes; Université Paris-Sud

Autor responsável pela correspondência
Email: bernard.helffer@univ-nantes.fr
França, 2 rue de la Houssinière, Nantes, 44322; 15 Rue Georges Clemenceau, Orsay, 91400

M. Persson Sundqvist

Lund University

Email: bernard.helffer@univ-nantes.fr
Suécia, Lund, 221 00

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017