On the Semiclassical Analysis of the Ground State Energy of the Dirichlet Pauli Operator in Non-Simply Connected Domains
- Autores: Helffer B.1,2, Persson Sundqvist M.3
-
Afiliações:
- Université de Nantes
- Université Paris-Sud
- Lund University
- Edição: Volume 226, Nº 4 (2017)
- Páginas: 531-544
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/240014
- DOI: https://doi.org/10.1007/s10958-017-3546-6
- ID: 240014
Citar
Resumo
We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semiclassical parameter. We show that the ground state energy of the Pauli operator is exponentially small as the semiclassical parameter tends to zero and estimate the decay rate. This extends our recent results discussing a recent paper by Ekholm–Kovařík–Portmann, including non-simply connected domains.
Sobre autores
B. Helffer
Université de Nantes; Université Paris-Sud
Autor responsável pela correspondência
Email: bernard.helffer@univ-nantes.fr
França, 2 rue de la Houssinière, Nantes, 44322; 15 Rue Georges Clemenceau, Orsay, 91400
M. Persson Sundqvist
Lund University
Email: bernard.helffer@univ-nantes.fr
Suécia, Lund, 221 00
Arquivos suplementares
