Numerical Study of the Structure of Metastable Configurations for the Thomson Problem
- Autores: Bondarenko A.N.1, Bugueva T.V.1,2, Kozinkin L.A.2
-
Afiliações:
- S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
- National Research Novosibirsk State University
- Edição: Volume 59, Nº 1 (2016)
- Páginas: 121-129
- Seção: Article
- URL: https://bakhtiniada.ru/1064-8887/article/view/236971
- DOI: https://doi.org/10.1007/s11182-016-0746-3
- ID: 236971
Citar
Resumo
A numerical method is proposed for solving the Thomson problem – finding stable positions for a system of N point charges distributed on a sphere that minimize the potential energy of the system. The behavior of this system is essentially nonlinear, and the number of metastable structures grows exponentially with N. This makes the problem of finding all stable configurations extremely difficult. The results of testing of the developed algorithm and of numerical study of the properties of the local potential energy minima for a system of point charges are presented.
Palavras-chave
Sobre autores
A. Bondarenko
S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: bondarenkoan1953@mail.ru
Rússia, Novosibirsk
T. Bugueva
S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences; National Research Novosibirsk State University
Email: bondarenkoan1953@mail.ru
Rússia, Novosibirsk; Novosibirsk
L. Kozinkin
National Research Novosibirsk State University
Email: bondarenkoan1953@mail.ru
Rússia, Novosibirsk
Arquivos suplementares
