Numerical Study of the Structure of Metastable Configurations for the Thomson Problem
- Авторы: Bondarenko A.N.1, Bugueva T.V.1,2, Kozinkin L.A.2
-
Учреждения:
- S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
- National Research Novosibirsk State University
- Выпуск: Том 59, № 1 (2016)
- Страницы: 121-129
- Раздел: Article
- URL: https://bakhtiniada.ru/1064-8887/article/view/236971
- DOI: https://doi.org/10.1007/s11182-016-0746-3
- ID: 236971
Цитировать
Аннотация
A numerical method is proposed for solving the Thomson problem – finding stable positions for a system of N point charges distributed on a sphere that minimize the potential energy of the system. The behavior of this system is essentially nonlinear, and the number of metastable structures grows exponentially with N. This makes the problem of finding all stable configurations extremely difficult. The results of testing of the developed algorithm and of numerical study of the properties of the local potential energy minima for a system of point charges are presented.
Ключевые слова
Об авторах
A. Bondarenko
S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Автор, ответственный за переписку.
Email: bondarenkoan1953@mail.ru
Россия, Novosibirsk
T. Bugueva
S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences; National Research Novosibirsk State University
Email: bondarenkoan1953@mail.ru
Россия, Novosibirsk; Novosibirsk
L. Kozinkin
National Research Novosibirsk State University
Email: bondarenkoan1953@mail.ru
Россия, Novosibirsk
Дополнительные файлы
