Numerical Study of the Structure of Metastable Configurations for the Thomson Problem
- 作者: Bondarenko A.N.1, Bugueva T.V.1,2, Kozinkin L.A.2
-
隶属关系:
- S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
- National Research Novosibirsk State University
- 期: 卷 59, 编号 1 (2016)
- 页面: 121-129
- 栏目: Article
- URL: https://bakhtiniada.ru/1064-8887/article/view/236971
- DOI: https://doi.org/10.1007/s11182-016-0746-3
- ID: 236971
如何引用文章
详细
A numerical method is proposed for solving the Thomson problem – finding stable positions for a system of N point charges distributed on a sphere that minimize the potential energy of the system. The behavior of this system is essentially nonlinear, and the number of metastable structures grows exponentially with N. This makes the problem of finding all stable configurations extremely difficult. The results of testing of the developed algorithm and of numerical study of the properties of the local potential energy minima for a system of point charges are presented.
作者简介
A. Bondarenko
S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: bondarenkoan1953@mail.ru
俄罗斯联邦, Novosibirsk
T. Bugueva
S. L. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences; National Research Novosibirsk State University
Email: bondarenkoan1953@mail.ru
俄罗斯联邦, Novosibirsk; Novosibirsk
L. Kozinkin
National Research Novosibirsk State University
Email: bondarenkoan1953@mail.ru
俄罗斯联邦, Novosibirsk
补充文件
