The influence of modulation of intestinal microbiota on clinical and immunological parameters and oxytocin levels in children with autism spectrum disorders
- 作者: Cherevko N.A.1,2, Novikov P.S.1,2, Khudyakova M.I.1, Arkhipov A.M.2, Loginova E.A.1, Vekovtsev A.A.3, Bylin P.G.3
-
隶属关系:
- Siberian State Medical University
- Medical Association “Center for Family Medicine”
- Scientific and Production Association “ArtLife”
- 期: 卷 27, 编号 4 (2024)
- 页面: 831-838
- 栏目: SHORT COMMUNICATIONS
- URL: https://bakhtiniada.ru/1028-7221/article/view/267858
- DOI: https://doi.org/10.46235/1028-7221-16873-TIO
- ID: 267858
如何引用文章
全文:
详细
Autism spectrum disorders are associated with an imbalance of immune and neurological disorders, starting after the age of two. The study is devoted to studying the role of specialized strains of bacteria Lactobacillus reuteri, which mediate the synthesis of oxytocin in humans and influence inflammation indicators. Bacteria of this strain were part of the biologically active additive “Panbiolact Mental”, developed and presented by NPO ArtLife (Tomsk). The purpose of the work was to assess the effect of specialized strains of bacteria Lactobacillus reuteri on changes in the composition of the intestinal microbiota, oxytocin levels, and immune parameters of children with ASD. The study included 43 children with autism spectrum disorders who took Panbiolact Mental for 90 days. The study materials included venous blood samples and fecal samples. The concentrations of cytokines (IL-4, IL-10, TNF, IFN), immunoglobulins (IgE, IgG, IgA, IgM) and the neuropeptide oxytocin were determined in the blood serum. Fecal samples were used to assess the qualitative and quantitative composition of the colon microbiota. Clinical symptoms of the disease associated with quality of life were assessed using the standard ATEC test scale (Autism Treatment Evaluation Checklist), expressed in scores corresponding to the severity of clinical and neurological parameters of the disease. In children with autism spectrum disorders, after 90 days of regular use of Panbiolact Mental, the number of bacteria of the genera Acinetobacter decreased, the number of Bacteroides species pluralis, Akkermansia muciniphila, Eubacterium rectale, Prevotella species pluralis and Methanobrevibacter smithii increased. Increases in the concentration of oxytocin, the protolerogenic coefficient IL-10/TNFα, immunoglobulins M and G, and a decrease in the concentrations of TNFα and IL-10 were recorded. The results of the study support the hypothesis of a significant role of gut microbiota diversity in the neuro-immune pathogenesis of autism spectrum disorders. “Panbiolact Mental” is presented as a potentially effective remedy for an integrated approach to the correction of ASD in children. These data may form the basis for further research in the field of probiotic therapy, as well as for the development of new strategies based on modulation of the intestinal microbiota.
作者简介
N. Cherevko
Siberian State Medical University; Medical Association “Center for Family Medicine”
Email: Pavel.N1234@yandex.ru
PhD, MD (Medicine), Professor, Immunology and Allergy Department, Siberian State Medical University; Allergist-Immunologist, Co-director, Medical Association “Center for Family Medicine”
俄罗斯联邦, Tomsk; TomskP. Novikov
Siberian State Medical University; Medical Association “Center for Family Medicine”
编辑信件的主要联系方式.
Email: Pavel.N1234@yandex.ru
PhD Applicant, Department of Immunology, Siberian State Medical University; Head, Clinical Diagnostic Laboratory, Medical Association “Center for Family Medicine”
俄罗斯联邦, Tomsk; TomskM. Khudyakova
Siberian State Medical University
Email: Pavel.N1234@yandex.ru
Applicant, Department of Immunology
俄罗斯联邦, TomskA. Arkhipov
Medical Association “Center for Family Medicine”
Email: Pavel.N1234@yandex.ru
Clinical Laboratory Diagnostics Doctor
俄罗斯联邦, TomskE. Loginova
Siberian State Medical University
Email: Pavel.N1234@yandex.ru
5th year Student of the Faculty of Medicine
俄罗斯联邦, TomskA. Vekovtsev
Scientific and Production Association “ArtLife”
Email: Pavel.N1234@yandex.ru
PhD (Medicine), Director for Science and Production
俄罗斯联邦, TomskP. Bylin
Scientific and Production Association “ArtLife”
Email: Pavel.N1234@yandex.ru
Leading Engineer for the Implementation of New Equipment and Technologies
俄罗斯联邦, Tomsk参考
- Coretti L., Paparo L., Riccio M.P., Amato F., Cuomo M., Natale A., Borrelli L., Corrado G., De Caro C., Comegna M., Buommino E., Castaldo G., Bravaccio C., Chiariotti L., Canani R.B., Lembo F. Gut Microbiota Features in Young Children With Autism Spectrum Disorders. Front. Microbiol., 2018, Vol. 9, 3146. doi: 10.3389/fmicb.2018.03146.
- Dinan T.G., Cryan J.F. Gut-brain axis in 2016: Brain-gut-microbiota axis – mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol., 2017, Vol. 14, no. 2, pp. 69-70.
- Dinan T.G., Stilling R.M., Stanton C., Cryan J.F. Collective unconscious: how gut microbes shape human behavior. J. Psychiatr. Res., 2015, Vol. 63, pp. 1-9.
- Erdman S.E. Oxytocin and the microbiome. Curr. Opin. Endocr. Metab. Res., 2021, Vol. 19, pp. 8-14.
- Flint H.J., Scott K.P., Louis P., Duncan S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol., 2012, Vol. 9, no. 10, pp. 577-589.
- Foster J.A., Rinaman L., Cryan J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neuron, 2017, Vol. 7, pp. 124-136.
- Huang M., Liu K., Wei Z., Feng Z., Chen J., Yang J., Zhong Q., Wan G., Kong X.J. Serum oxytocin level correlates with gut microbiome dysbiosis in children with autism spectrum disorder. J. Neurosci., 2021, Vol. 15, pp. 81-90.
- Kaisar M.M., Pelgrom L.R., van der Ham A.J., Yazdanbakhsh M., Everts B. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front. Immunol., 2017, Vol. 8, 1429. doi: 10.3389/fimmu.2017.01429.
- Kong X., Probiotic and oxytocin combination therapy in patients with autism spectrum disorder: a randomized, double-blinded, placebo-controlled pilot trial. Nutrients, 2021, Vol. 13, no. 5., pp 1552-1569.
- Lombardi V.C., De Meirleir K.L., Subramanian K., Nourani S.M., Dagda R.K., Delaney S.L., Palotás A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem., 2018, Vol. 61, pp. 1-16.
- Luna R.A., Oezguen N., Balderas M., Anderson G.M., Savidge T., Williams K.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol., 2017, Vol. 3, pp. 218-230.
- Ma B., Liang J., Dai M., Wang J., Luo J., Zhang Z., Jing J. Altered gut microbiota in Chinese children with autism spectrum disorders. Front. Cell. Infect. Microbiol., 2019, Vol. 9, 40. doi: 10.3389/fcimb.2019.00040.
- Mangiola F., Ianiro G., Franceschi F., Fagiuoli S., Gasbarrini G., Gasbarrini A. Gut microbiota in autism and mood disorders. World J. Gastroenterol., 2016, Vol. 22, no. 1, pp. 361-368.
- Pulikkan J., Maji A., Dhakan D.B., Saxena R., Mohan B., Anto M.M., Agarwal N., Grace T., Sharma V.K. Gut microbial dysbiosis in indian children with autism spectrum disorders. Microb. Ecol., 2018, Vol. 76, no. 4, pp. 1102-1114.
- Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, Vol. 7, no. 1, pp. 14-36.
补充文件
