STABILIZATION OF MEMRISTOR CELL STATES DURING INITIAL SWITCHING PROCESS AFTER FORMING
- Авторлар: Fadeev A.V.1, Rudenko K.V.1
-
Мекемелер:
- NRC “Kurchatov Institute” – Valiev IPT
- Шығарылым: Том 54, № 3 (2025)
- Беттер: 224-231
- Бөлім: MEMRISTORS
- URL: https://bakhtiniada.ru/0544-1269/article/view/304934
- DOI: https://doi.org/10.31857/S0544126925030044
- EDN: https://elibrary.ru/pxfokm
- ID: 304934
Дәйексөз келтіру
Аннотация
A self-consistent model describing the break/restoration of a conducting channel-filament in a memristor cell based on the transport of oxygen vacancies in transition metal oxides is build. The stabilization of the memristor cell conductivity during initial switching from a low-resistance state to a high-resistance state and back is studied.
Авторлар туралы
A. Fadeev
NRC “Kurchatov Institute” – Valiev IPT
Хат алмасуға жауапты Автор.
Email: AlexVFadeev@gmail.com
Moscow, Russia
K. Rudenko
NRC “Kurchatov Institute” – Valiev IPT
Email: rudenko@ftian.ru
Moscow, Russia
Әдебиет тізімі
- Fadeev A.V., Rudenko K.V. Filament-based memristor switching model // Microelectron. Eng. 2024. V. 289 P. 112179. https://doi.org/10.1016/j.mee.2024.112179
- Fadeev A.V., Rudenko K.V. Evolution of the Current–Voltage Characteristic of a Bipolar Memristor, Russian Microelectronics. 2024, V. 53(4). P. 297–302. https://doi.org/10.1134/S1063739724600432
- Permiakova O.O., Rogozhin A.E., Miakonkikh A.V., Smirnova E.A., Rudenko K.V. Transition between resistive switching modes in asymmetric HfO2-based structures. // Microelectron. Eng. 2023. V. 275. P. 111983. https://doi.org/10.1016/j.mee.2023.111983
- Zhang K., Ganesh P., Cao Y. Deterministic Conductive Filament Formation and Evolution for Improved Switching Uniformity in Embedded Metal-Oxide-Based Memristors─A Phase-Field Study. ACS // Appl. Mater. Interfaces 2023. V. 15(17). P. 21219–21227. https://doi.org/10.1021/acsami.3c00371
- Roldán, J.B., Miranda E., Maldonado D., Mikhaylov A.N., Agudov N.V., Dubkov A.A., Koryazhkina M.N., González M., Villena M.A., Poblador S., Saludes-Tapia M., Picos R., Jiménez-Molinos F., Stavrinides S.G., Salvador E., Alonso F., Campabadal F., Spagnolo B., Lanza M., Chua L.O. Variability in resistive memories // Adv. Intell. Syst. 2023. V. 5(6). P. 2200338. https://doi.org/10.1002/aisy.202200338
- Mikhaylov A., Belov A., Korolev D., Antonov I., Kotomina V., Kotina A., Gryaznov E., Sharapov A., Koryazhkina M., Kryukov R., Zubkov S., Sushkov A., Pavlov D., Tikhov S., Morozov O., Tetelbaum D. Multilayer Metal-Oxide Memristive Device with Stabilized Resistive Switching // Adv. Mater. Technol. 2020. V. 5. P. 1900607. https://doi.org/10.1002/admt.201900607
- Zhang Y., Mao G.Q., Zhao X. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging // Nat. Commun. 2021. V. 12. P. 7232. https://doi.org/10.1038/s41467-021-27575-z
- Privitera S., Bersuker G., Butcher B., Kalantarian A., Lombardo S., Bongiorno C., Geer R., Gilmer D.C., Kirsch P.D. Microscopy study of the conductive filament in HfO2 resistive switching memory devices // Microelectron. Eng. 2013. V. 109. P. 75–78. https://doi.org/10.1016/j.mee.2013.03.145
- Marchewka A., Waser R. and Menzel S. Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model. // 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington DC. USA. 2015. P. 297–300. https://doi.org/10.1109/SISPAD.2015.7292318
- Sze S.M., Ng K.K. Physics of Semiconductor Devices. // Third ed., John Wiley & Sons, New Jersey, 2007. ISBN:9780471143239
Қосымша файлдар
