Exact relations between running of αs and α in N = 1 SQCD + SQED
- 作者: Kataev A.L1,2, Stepanyantz K.V3
-
隶属关系:
- Institute for Nuclear Research of the Russian Academy of Sciences
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
- Moscow State University
- 期: 卷 121, 编号 5-6 (2025)
- 页面: 337-339
- 栏目: Articles
- URL: https://bakhtiniada.ru/0370-274X/article/view/286575
- DOI: https://doi.org/10.31857/S0370274X25030019
- EDN: https://elibrary.ru/PQGVDL
- ID: 286575
如何引用文章
详细
In N = 1 supersymmetric QCD and QED theory we derive the (all-order) exact equations relating the renormalization group behaviour of the strong and electromagnetic couplings and prove that they are valid in the combined higher covariant derivative regularized and minimal subtraction of logarithms renormalized prescription. In particular, the β-function of N = 1 supersymmetric QCD can be expressed in terms of the Adler D-function. If all flavors have the same absolute value of the electromagnetic charges, it is also possible to write a simple relation between the β-functions for the strong and electromagnetic coupling constants. In this particular case there is a special renormalization group invariant relation.
作者简介
A. Kataev
Institute for Nuclear Research of the Russian Academy of Sciences; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
Email: kataev@ms2.inr.ac.ru
Moscow, Russia; Dubna, Russia
K. Stepanyantz
Moscow State University
编辑信件的主要联系方式.
Email: kataev@ms2.inr.ac.ru
Moscow, Russia
参考
- E. C. G. Stueckelberg de Breidenbach and A. Petermann, Helv. Phys. Acta 26, 499 (1953).
- M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300(1954).
- N. N. Bogolyubov and D. V. Shirkov, Nuovo Cim. 3, 845(1956).
- S. L. Adler, Phys. Rev. D 10, 3714 (1974).
- V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 229, 381 (1983).
- D. R. T. Jones, Phys. Lett. B 123, 45 (1983).
- I. Jack, D. R. T. Jones, and C. G. North, Nucl. Phys. B 486, 479 (1997); arXiv:hepph/9609325 [hep-ph]].
- D. I. Kazakov, JETP Lett. 41, 335 (1985).
- A. A. Slavnov, Nucl. Phys. B 31, 301 (1971).
- A. A. Slavnov, Teor. Mat. Fiz. 13, 174 (1972) [Theor. Math. Phys. 13, 1064 (1972)].
- A. L. Kataev and K. V. Stepanyantz, Nucl. Phys. B 875, 459 (2013); arXiv:1305.7094 [hep-th].
- I. O. Goriachuk, A. L. Kataev, and K. V. Stepanyantz, Phys. Lett. B 785, 561 (2018); arXiv:1808.02050 [hep-th].
- I. O. Goriachuk and A. L. Kataev, JETP Lett. 111(12), 663 (2020); arXiv:2005.03445 [hep-th].
- M. Shifman and K. Stepanyantz, Phys. Rev. Lett. 114(5), 051601 (2015); arXiv:1412.3382 [hep-th].
- M. Shifman and K. V. Stepanyantz, Phys. Rev. D 91, 105008 (2015); arXiv:1502.06655 [hep-th].
- A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, Pis’ma v ZhETF 42, 182 (1985) [JETP Lett. 42, 224 (1985)].
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Lett. B 166, 334 (1986).
- D. Korneev, D. Plotnikov, K. Stepanyantz, and N. Tereshina, JHEP 10, 046 (2021); arXiv:2108.05026 [hep-th].
- O. Haneychuk, V. Shirokova, and K. Stepanyantz, JHEP 09, 189 (2022); arXiv:2207.11944 [hep-ph].
- K. V. Stepanyantz, Nucl. Phys. B 852, 71 (2011); arXiv:1102.3772 [hep-th].
- A. V. Smilga and A. Vainshtein, Nucl. Phys. B 704, 445 (2005); arXiv:hep-th/0405142 [hep-th].
- A. A. Vladimirov, Sov. J. Nucl. Phys. 31, 558 (1980).
- A. L. Kataev, A. E. Kazantsev, and K. V. Stepanyantz, Nucl. Phys. B 926, 295 (2018); arXiv:1710.03941 [hep-th].
- C. Bonanno, P. Butti, M. Garc´ıa P´erez, A. Gonz´alezArroyo, K. I. Ishikawa, and M. Okawa, Phys. Rev. D 110(7), 074507 (2024); arXiv:2406.08995 [hep-th].
补充文件
