General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case
- 作者: Mori S.1,2,3, Prokhorov Y.G.4
-
隶属关系:
- Kyoto University Institute for Advanced Study
- Research Institute for Mathematical Sciences, Kyoto University
- Chubu University
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 212, 编号 3 (2021)
- 页面: 88-111
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/142361
- DOI: https://doi.org/10.4213/sm9388
- ID: 142361
如何引用文章
详细
作者简介
Shigefumi Mori
Kyoto University Institute for Advanced Study; Research Institute for Mathematical Sciences, Kyoto University; Chubu University
Email: mori@kurims.kyoto-u.ac.jp
Yuri Prokhorov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
参考
- Yu. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163
- J. Kollar, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703
- J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- J. Kollar, “Real algebraic threefolds. III. Conic bundles”, J. Math. Sci. (N.Y.), 94:1 (1999), 996–1020
- J. Kollar, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338
- S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253
- S. Mori, “On semistable extremal neighborhoods”, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002, 157–184
- S. Mori, “Errata to “Classification of three-dimensional flips””, J. Amer. Math. Soc., 20:1 (2007), 269–271
- S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369
- S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles. II”, Publ. Res. Inst. Math. Sci., 44:3 (2008), 955–971
- S. Mori, Yu. Prokhorov, “On $mathbb Q$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810
- S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438
- Ш. Мори, Ю. Г. Прохоров, “Трехмерные экстремальные окрестности кривой с одной негоренштейновой точкой”, Изв. РАН. Сер. матем., 83:3 (2019), 158–212
- Ю. Г. Прохоров, “О дополняемости канонического дивизора для расслоений Мори на коники”, Матем. сб., 188:11 (1997), 99–120
- M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414
- В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203
补充文件
