Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known that the topological conjugacy class of a Morse-Smale flows with unique saddle is defined by the equivalence class of the Hopf knot in S2×S1">S2×S1 that is the projection of the one-dimensional saddle separatrix onto the basin of attraction of the nodal point, and the ambient manifold of a diffeomorphism in this class is the 3-sphere. In the present paper a similar result is obtained for gradient-like diffeomorphisms with exactly two saddle points and unique heteroclinic curve.

Sobre autores

Olga Pochinka

National Research University – Higher School of Economics in Nizhny Novgorod

Autor responsável pela correspondência
Email: olga-pochinka@yandex.ru
Doctor of physico-mathematical sciences, no status

Elena Talanova

National Research University – Higher School of Economics in Nizhny Novgorod; National Research Lobachevsky State University of Nizhny Novgorod

Email: eltalanova72@gmail.com

Danila Shubin

National Research University – Higher School of Economics in Nizhny Novgorod

Email: schub.danil@yandex.ru

Bibliografia

  1. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  2. P. Kirk, C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96
  3. P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.
  4. B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228
  5. C. Bonatti, V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
  6. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  7. В. З. Гринес, Е. В. Жужома, В. C. Медведев, “О диффеоморфизмах Морса–Смейла с четырьмя периодическими точками на замкнутых ориентируемых многообразиях”, Матем. заметки, 74:3 (2003), 369–386
  8. V. S. Afraimovich, M. I. Rabinovich, P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208
  9. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.
  10. B. Шмуклер, O. Починка, “Бифуркации, меняющие тип гетероклинических кривых 3-диффеоморфизмов Морса–Смейла”, Таврический вестник информатики и математики, 50:1 (2021), 101–114
  11. T. V. Medvedev, O. V. Pochinka, “The wild Fox–Artin arc in invariant sets of dynamical systems”, Dyn. Syst., 33:4 (2018), 660-666

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pochinka O.V., Talanova E.A., Shubin D.D., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».