Узел как полный инвариант 3-диффеоморфизмов Морса–Смейла с четырьмя неподвижными точками

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Известно, что топологическая сопряженность градиентно-подобных 3-диффеоморфизмов с единственной седловой точкой полностью определяется эквивалентностью узлов Хопфа на многообразии \( \mathbb S^2\times\mathbb S^1 \), являющихся проекцией одномерной седловой сепаратрисы в бассейн узловой точки, а несущим многообразием для всех таких каскадов является 3-сфера. В настоящей работе аналогичный результат устанавливается для градиентно-подобных 3-диффеоморфизмов в точности с двумя седловыми точками и единственной гетероклинической кривой.Библиография: 11 названий.

Об авторах

Ольга Витальевна Починка

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Автор, ответственный за переписку.
Email: olga-pochinka@yandex.ru
доктор физико-математических наук, без звания

Елена Анатольевна Таланова

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде; Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

Email: eltalanova72@gmail.com

Данила Денисович Шубин

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Email: schub.danil@yandex.ru

Список литературы

  1. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  2. P. Kirk, C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96
  3. P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.
  4. B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228
  5. C. Bonatti, V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
  6. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  7. В. З. Гринес, Е. В. Жужома, В. C. Медведев, “О диффеоморфизмах Морса–Смейла с четырьмя периодическими точками на замкнутых ориентируемых многообразиях”, Матем. заметки, 74:3 (2003), 369–386
  8. V. S. Afraimovich, M. I. Rabinovich, P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208
  9. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.
  10. B. Шмуклер, O. Починка, “Бифуркации, меняющие тип гетероклинических кривых 3-диффеоморфизмов Морса–Смейла”, Таврический вестник информатики и математики, 50:1 (2021), 101–114
  11. T. V. Medvedev, O. V. Pochinka, “The wild Fox–Artin arc in invariant sets of dynamical systems”, Dyn. Syst., 33:4 (2018), 660-666

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Починка О.В., Таланова Е.А., Шубин Д.Д., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».