Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 213, № 9 (2022)

Обложка

О совпадении функций множества в квазиконформном анализе

Водопьянов С.К.

Аннотация

Известно, что отображения квазиконформного анализа можно определить несколькими эквивалентнымиспособами: 1) как гомеоморфизмы, которые индуцируют ограниченные операторы композиции пространств Соболева; 2) как гомеоморфизмы класса Соболева с конечными искажениями, для которых операторная функция искажения суммируема; 3) как гомеоморфизмы, которые изменяют контролируемым способом емкость образа конденсатора через весовую емкость конденсатора в прообразе; 4) как гомеоморфизмы, которые изменяют контролируемым способом модуль образа семейства кривых через весовой модуль семейства кривых в прообразе. С каждым из этих определений ассоциируется некоторая функция множества, определенная на открытых подмножествах. Основной результат работы состоит в доказательстве совпадения всех этих функций множества.Библиография: 48 названий.
Математический сборник. 2022;213(9):3-33
pages 3-33 views

Интегрируемые биллиарды на гиперболоиде Минковского: экстремальные многочлены и топология

Драгович В.И., Гасиорек Ш., Раднович М.

Аннотация

Рассматриваются биллиардные системы в компактных областях, ограниченных софокусными квадриками, на однополостном гиперболоиде в пространстве Минковского. Для таких биллиардов находятся условия эллиптической периодичности. Топология этих биллиардных систем описывается в терминах инвариантов Фоменко, после чего условия периодичности формулируются в терминах функциональных уравнений Пелля и экстремальных многочленов, возникающих в этой связи. Для нескольких примеров мы проводим вычисления в терминах эллиптических функций и классических многочленов Чебышёва и Золотарёва, являющихся экстремальными многочленами на отрезке или паре отрезков. Полученные результаты сопоставляются со случаем биллиардов на евклидовой плоскости и плоскости Минковского.Посвящается Р. Бакстеру в связи с 80-летием со дня его рождения.Библиография: 51 название.
Математический сборник. 2022;213(9):34-69
pages 34-69 views

Распределение последовательностей Коробова–Главки

Илларионов А.А.

Аннотация

Пусть $N$ – натуральное число и $a_1, …, a_s$ – целые числа.Н. М. Коробов (1959 г.) и Е. Главка (1962 г.) предложили использовать точки вида$$x^{(k)}=(\{\frac{a_1 k}N\}, …, \{\frac{a_1 k}N\}),\qquad k=1,…, N,$$в качестве узлов многомерных квадратурных формул. Мы получаем некоторые новые результаты, связанные с распределением последовательности $K_N(a)=\{x^{(1)},…, x^{(N)}\}$. В частности, мы доказываем, что$$\frac{\ln^{s-1} N}{N \ln\ln N} \underset{s}\ll D(K_N(a)) \underset{s}\ll \frac{\ln^{s-1} N}{N} \ln\ln N$$для “почти всех” $a\in (\mathbb Z_N^*)^s$, где $D(K_N(a))$ – отклонение последовательности $K_N(a)$ от равномерного распределения, а $\mathbb Z^*_N$ – приведенная система вычетов по модулю $N$.Библиография: 18 названий.
Математический сборник. 2022;213(9):70-96
pages 70-96 views

Оценки Соломяка для оператора Бирмана–Швингера

Сукочев Ф.А., Занин Д.В.

Аннотация

Рассматриваются оценки Цвикеля для оператора $(1-\Delta_{\mathbb{T}^d})^{-d/4}M_f(1-\Delta_{\mathbb{T}^d})^{-d/4}$ на торе $\mathbb{T}^d$ для идеала $\mathcal{L}_{1,\infty}$ в случае, когда $f$ принадлежит пространству Орлича $L\log L(\mathbb{T}^d)$. Эти оценки получены М. З. Соломяком в 1995 г. для четных размерностей; мы распространяем их на случай нечетных размерностей. Показывается, что этот результат не продолжается на случай лапласианов на $\mathbb{R}^d$ не только для пространств Орлича на $\mathbb{R}^d$, но также для любых симметричных функциональных пространств на $\mathbb{R}^d$. Несмотря на это мы получаем новый положительный результат для симметризованных в стиле Соломяка оценок для лапласианов на $\mathbb{R}^d$, когда $d$ — произвольное натуральное число и функция $f$ берется из $L\log L(\mathbb{R}^d)$. Этот последний результат показывает конформную инвариантность оценок Соломяка.Библиография: 44 названия.
Математический сборник. 2022;213(9):97-137
pages 97-137 views

Собственные циклические симметрии многомерных цепных дробей

Тлюстангелов И.А.

Аннотация

Работа посвящена доказательству утверждения о существовании в произвольной размерности палиндромичных цепных дробей. Кроме того, доказывается критерий наличия у алгебраической цепной дроби собственной циклической палиндромической симметрии в случае $n=4$. В качестве многомерного обобщения цепных дробей рассматриваются полиэдры Клейна.Библиография: 11 названий.
Математический сборник. 2022;213(9):138-166
pages 138-166 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».