Belyi's theorem for smooth complete intersections of general type in generalized Grassmannians and weighted projective spaces
- Авторлар: Ovcharenko M.A.1,2
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- International Laboratory for Mirror Symmetry and Automorphic Forms, National Research University Higher School of Economics, Moscow, Russia
- Шығарылым: Том 216, № 6 (2025)
- Беттер: 59-76
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306713
- DOI: https://doi.org/10.4213/sm10208
- ID: 306713
Дәйексөз келтіру
Аннотация
We show that Javanpeykar's proof of Belyi's theorem for smooth complete intersections of general type in ordinary projective spaces can be generalised to smooth complete intersections of general type in generalised Grassmannians and weighted projective spaces. We propose an approach to the generalisation of this result to smooth complete intersections of general type in more general Mori dream spaces.
Негізгі сөздер
Авторлар туралы
Mikhail Ovcharenko
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; International Laboratory for Mirror Symmetry and Automorphic Forms, National Research University Higher School of Economics, Moscow, Russia
Хат алмасуға жауапты Автор.
Email: ovcharenko@mi-ras.ru
without scientific degree, no status
Әдебиет тізімі
- I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface, Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015, viii+530 pp.
- I. Bauer, F. Catanese, F. Grunewald, “Faithful actions of the absolute Galois group on connected components of moduli spaces”, Invent. Math., 199:3 (2015), 859–888
- Г. В. Белый, “О расширениях Галуа максимального кругового поля”, Изв. АН СССР. Сер. матем., 43:2 (1979), 267–276
- W. Bruns, J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math., 39, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 1998, xii+453 pp.
- A. Corti, M. Reid, “Weighted Grassmannians”, Algebraic geometry, A volume in memory of P. Francia, Walter de Gruyter & Co., Berlin, 2002, 141–163
- Groupes de monodromie en geometrie algebrique, Seminaire de geometrie algebrique du Bois-Marie 1967–1969 (SGA 7 II), v. II, Lecture Notes in Math., 340, eds. P. Deligne, N. Katz, Springer-Verlag, Berlin–New York, 1973, x+438 pp.
- A. Dimca, “Singularities and coverings of weighted complete intersections”, J. Reine Angew. Math., 1986:366 (1986), 184–193
- I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer-Verlag, Berlin, 1982, 34–71
- R. W. Easton, R. Vakil, “Absolute Galois acts faithfully on the components of the moduli space of surfaces: a Belyi-type theorem in higher dimension”, Int. Math. Res. Not. IMRN, 2007:20 (2007), rnm080, 10 pp.
- U. Garra, F. Zucconi, “Very ampleness and the infinitesimal Torelli problem”, Math. Z., 260:1 (2008), 31–46
- G. Gonzalez-Diez, “Belyi's theorem for complex surfaces”, Amer. J. Math., 130:1 (2008), 59–74
- A. Grothendieck, “Elements de geometrie algebrique. II. Etude globale elementaire de quelques classes de morphismes”, Inst. Hautes Etudes Sci. Publ. Math., 8 (1961), 5–222
- Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
- A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173
- A. Javanpeykar, “Belyi's theorem for complete intersections of general type”, Michigan Math. J., 66:1 (2017), 85–97
- S. J. Kovacs, M. Lieblich, “Erratum for {Boundedness} of families of canonically polarized manifolds: a higher dimensional analogue of Shafarevich's conjecture”, Ann. of Math. (2), 173:1 (2011), 585–617
- B. Köck, “Belyi's theorem revisited”, Beitr. Algebra Geom., 45:1 (2004), 253–265
- K. Konno, “Infinitesimal Torelli theorem for complete intersections in certain homogeneous Kähler manifolds. II”, Tohoku Math. J. (2), 42:3 (1990), 333–338
- Ph. Licht, “Infinitesimal Torelli for weighted complete intersections and certain Fano threefolds”, Beitr. Algebra Geom., 65:1 (2024), 97–127
- G. Malle, D. Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Stud. Adv. Math., 133, Cambridge Univ. Press, Cambridge, 2011, xiv+309 pp.
- R. Muñoz, G. Occhetta, L. E. Sola Conde, K. Watanabe, J. A. Wisniewski, “A survey on the Campana–Peternell conjecture”, Rend. Istit. Mat. Univ. Trieste, 47 (2015), 127–185
- T. Okada, “Stable rationality of orbifold Fano threefold hypersurfaces”, J. Algebraic Geom., 28:1 (2019), 99–138
- M. Ovcharenko, “The classification of smooth well-formed Fano weighted complete intersections”, Internat. J. Math., 34:11 (2023), 2350064, 34 pp.
- M. Pieropan, “On Galois descent of complete intersections”, Math. Res. Lett., 28:4 (2021), 1243–1254
- V. V. Przyjalkowski, C. Shramov, Weighted complete intersections, De Gruyter Exp. Math., Walter de Gruyter GmbH, Berlin, 2024, x+250 pp.
- В. В. Пржиялковский, К. А. Шрамов, “Автоморфизмы взвешенных полных пересечений”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 217–229
- V. Przyjalkowski, C. Shramov, “Bounds for smooth Fano weighted complete intersections”, Commun. Number Theory Phys., 14:3 (2020), 511–553
- В. В. Пржиялковский, К. А. Шрамов, “Взвешенные полные пересечения Фано большой коразмерности”, Сиб. матем. журн., 61:2 (2020), 377–384
- В. В. Пржиялковский, К. А. Шрамов, “Об автоморфизмах квазигладких взвешенных полных пересечений”, Матем. сб., 212:3 (2021), 112–127
- M. Pizzato, T. Sano, L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395
- T. Sano, L. Tasin, Delta invariants of weighted hypersurfaces
- T. Szamuely, Galois groups and fundamental groups, Cambridge Stud. Adv. Math., 117, Cambridge Univ. Press, Cambridge, 2009, x+270 pp.
- M. I. Qureshi, M. Wrobel, “Smooth Fano intrinsic Grassmannians of type $(2, n)$ with Picard number two”, Int. Math. Res. Not. IMRN, 2022:22 (2022), 17999–18034
- M. I. Qureshi, B. Szendrői, “Constructing projective varieties in weighted flag varieties”, Bull. Lond. Math. Soc., 43:4 (2011), 786–798
- M. I. Qureshi, “Constructing projective varieties in weighted flag varieties. II”, Math. Proc. Cambridge Philos. Soc., 158:2 (2015), 193–209
- M. I. Qureshi, B. Szendrői, “Calabi–Yau threefolds in weighted flag varieties”, Adv. High Energy Phys., 2012 (2012), 547317, 14 pp.
- S. Usui, “Local Torelli theorem for some non-singular weighted complete intersections”, Proceedings of the international symposium on algebraic geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store Co., Ltd., Tokyo, 1978, 723–734
Қосымша файлдар
