Filamentous Green Algae Cladophora spp. in the Crimean Hypersaline Water Bodies: Ecosystem Engineers and a Valuable Resource (Review)
- Autores: Prazukin A.V1, Shadrin N.V1, Firsov Y.K1, Anufriieva E.V1
-
Afiliações:
- A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
- Edição: Volume 18, Nº 6 (2025)
- Páginas: 1069-1086
- Seção: ФИТОПЛАНКТОН, ФИТОБЕНТОС, ФИТОПЕРИФИТОН
- URL: https://bakhtiniada.ru/0320-9652/article/view/362523
- DOI: https://doi.org/10.7868/S3034522725060075
- ID: 362523
Citar
Resumo
Palavras-chave
Sobre autores
A. Prazukin
A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of SciencesSevastopol, Russia
N. Shadrin
A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of SciencesSevastopol, Russia
Yu. Firsov
A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of SciencesSevastopol, Russia
E. Anufriieva
A.O. Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences
Email: lena_anufriieva@mail.ru
Sevastopol, Russia
Bibliografia
- Ануфриева Е.В., Шадрин Н.В. 2023. Жизнь в экстремальной среде. Животные в экосистемах гиперсоленых вод. М.: Тов-во науч. изданий КМК.
- Балушкина Е.В., Голубков С.М., Голубков М.С. и др. 2009. Влияние абиотических и биотических факторов на структурно-функциональную организацию экосистем соленых озер Крыма // Журн. общ. биол. Т. 70. № 6. С. 504.
- Голубков С.М., Шадрин Н.В., Голубков М.С. и др. 2018. Пищевые цепи и их динамика в экосистемах мелководных озер с различной соленостью воды // Экология. № 5. С. 391. https://doi.org/10.1134/S0367059718050050
- Губанов В.И., Бобко Н.И. 2012. Гидролого-гидрохимическая характеристика соляного озера на мысе Херсонес (Севастополь, Крым) // Мор. экол. журн. Т. 11. № 4. С. 18.
- Латышев С.Э. 2025. Фитомасса и продукция макрофитов в озерах Белорусского поозерья // Биология внутр. вод. Т. 18. № 2. С. 298.
- Неврова Е.Л., Шадрин Н.В. 2005. Донные диатомовые водоросли соленых озер Крыма // Мор. экол. журн. Т. 4. № 4. С. 61.
- Остапчук П.С., Шадрин Н.В., Празукин А.В. и др. 2025. Влияние добавок зеленой нитчатой водоросли Cladophora в рацион молодняка кроликов на их рост и развитие // Аграрный вестник Урала. Т. 25. № 1. С. 61. https://doi.org/10.32417/1997-4868-2025-25-01-61-73
- Павловская Т.М., Празукин А.В., Шадрин Н.В. 2009. Сезонные явления в сообществе инфузорий гиперсоленого озера Херсонесское (Крым) // Мор. экол. журн. Т. 8. № 2. С. 53.
- Празукин А.В., Бобкова А.Н., Евстигнеева И.К. и др. 2008. Структура и сезонная динамика фитокомпоненты биокосной системы морского гиперсоленого озера на мысе Херсонес (Крым) // Мор. экол. журн. Т. 7. № 1. С. 61.
- Празукин А.В. 2009. Фотосинтетическая активность растительного покрова Херсонесского озера (Крым) и его структурно- функциональная организация // Системы контроля окружающей среды: средства, информационные технологи и мониторинг. Сб. науч. тр. Севастополь: Мор. гидрофиз. ин-т. С. 370.
- Празукин А.В. 2015. Экологическая фитосистемология. М.: Перо.
- Празукин А.В., Ануфриева Е.В., Шадрин Н.В. 2019. Фотоситетическая активность матов нитчатых водорослей гиперсоленого озера Херсонесское (Крым) // Вестн. Твер. гос. ун-та. Серия: Биология и экология. № 2(54). С. 87. https://doi.org/10.26456/vtbio74
- Сеничева М.И., Губелит В., Празукин А.В., Шадрин Н.В. 2008. Фитопланктон гиперсоленых озер Крыма // Микроводоросли Черного моря: проблемы сохранения биоразнообразия и биотехнологического использования. Севастополь: ЭКОСИ-Гидрофизика. С. 93.
- Тооминг Х.Г. 1977. Солнечная радиация и формирование урожая. Л.: Гидрометеоиздат.
- Шадрин Н.В. 2024. Дополнительность общего и уникального, случайность и необходимость в экологии водоемов. М.: Тов-во науч. изданий КМК.
- Шадрин Н.В., Миходюк О.С., Найданова О.Г. и др. 2008. Донные цианобактерии гиперсоленых озер Крыма // Микроводоросли Черного моря: проблемы сохранения биоразнообразия и биотехнологического использования. Севастополь: ЭКОСИ-Гидрофизика. С. 100.
- Шадрин Н.В., Остапчук П.С., Куевда Т.А. и др. 2024. Влияние добавок нитчатой зеленой водоросли Cladophora в рацион кроликов на показатели крови // Аграрная наука Евро-Северо-Востока. Т. 25. № 6. С. 1137. https://doi.org/10.30766/2072-9081.2024.25.6.1137-1146
- Adla K., Dejan K., Neira D., Dragana Š. 2022. Degradation of ecosystems and loss of ecosystem services // One health. Cambridge: Acad. Press. P. 281. https://doi.org/10.1016/B978-0-12-822794-7.00008-3
- Andersson B., Salter A.H., Virgin I. et al. 1992. Photodamage to photosystem II – primary and secondary events // J. Photochem. Photobiol. B. V. 15. Iss. 1–2. P. 15. https://doi.org/10.1016/1011-1344(92)87003-R
- Anufriieva E.V. 2018. How can saline and hypersaline lakes contribute to aquaculture development? A review // J. Oceanol. Limnol. V. 36. Iss. 6. P. 2002. https://doi.org/10.1007/s00343-018-7306-3
- Attia-Ismail S.A. 2022. Halophytic plants for animal feed: associated botanical and nutritional characteristics. Bentham Science Publishers. https://doi.org/10.2174/97898150503871220101
- Bader Q.A., Al-Sharify Z.T., Dhabab J.M. et al. 2024. Cellulose nanomaterials in oil and gas industry and bio-manufacture: Current situation and future outlook // Case Studies in Chemical and Environmental Engineering. V. 10. P. 100993. https://doi.org/10.1016/j.cscee.2024.100993
- Balycheva D., Anufriieva E., Lee R. et al. 2023. Salinitydependent species richness of Bacillariophyta in hypersaline environments // Water. V. 15. Iss. 12. Art. no. 2252 (11 p.). https://doi.org/10.3390/w15122252
- Berner T., Dubinsky Z., Wyman K., Falkowski P.G. 1989. Photoadaptation and the “package” effect in Dunaliella teriolecta (Chlorophyceae) // J. Phycol. V. 25. Iss. 1. P. 70. https://doi.org/10.1111/j.0022-3646.1989.00070.x
- Berry H.A., Lembi C.A. 2000. Effects of temperature and irradiance on the seasonal variation of a Spirogyra (Chlorophyta) population in a midwestern lake (USA) // J. Phycol. V. 36. Iss. 5. P. 841. https://doi.org/10.1046/j.1529-8817.2000.99138.x
- Binzer T., Sand-Jensen K., Middelboe A. 2006. Community photosynthesis of macrophytes // Limnol., Oceanogr. V. 51. Iss. 6. P. 2722. https://doi.org/10.4319/lo.2006.51.6.2722
- Bischof K., Rautenberger R., Brey L., Perez-Llorens J.L. 2006. Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain // Mar. Ecol. Prog. Ser. V. 306. P. 165. https://doi.org/10.3354/meps306165
- Bo Y., Zhou F., Zhao J. et al. 2021. Additional surface-water deficit to meet global universal water accessibility by 2030 // J. Clean. Prod. V. 320. P. 128829. https://doi.org/10.1016/j.jclepro.2021.128829
- Canale R.P., Auer M.T. 1982. Ecological studies and mathematical modeling of Cladophora in Lake Huron: 7. Model verification and system response // J. Great Lakes Res. V. 8. Iss. 1. P. 134. https://doi.org/10.1016/S0380-1330(82)71951-3
- Chudyba H. 1965. Cladophora glomerata and accompanying algae in the Skawa River // Acta Hydrobiologica. V. 7(1). P. 93.
- Davis J.A., McGuire M., Halse S.A. et al. 2003. What happens when you add salt: predicting impacts of secondary salinisation on shallow aquatic ecosystems by using an alternative-states model // Aust. J. Bot. V. 51. № 6. P. 715. https://doi.org/10.1071/BT02117
- Dodds W.K., Gudder D.A. 1992. The ecology of Cladophora // J. Phycol. V. 28. Iss. 4. P. 415. https://doi.org/10.1111/j.0022-3646.1992.00415.x
- Dodds W.K., Biggs B.J., Lowe R.L. 1999. Photosynthesis– irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure // J. Phycol. V. 35. Iss. 1. P. 42. https://doi.org/10.1046/j.1529-8817.1999.3510042.x
- Eiseltova M., Pokorny J. 1994. Filamentous algae in fish ponds of the Třeboň Biosphere Reserve-ecophysiological study // Vegetatio. V. 113. № 2. P. 155. https://doi.org/10.1007/BF00044232
- Ensminger I., Xylander M., Hagen C., Braune W. 2001. Strategies providing success in a variable habitat: III. Dynamic control of photosynthesis in Cladophora glomerata // Plant. Cell. Environ. V. 24. Iss. 8. P. 769. https://doi.org/10.1046/j.1365-3040.2001.00725.x
- Gladyshev M.I., Gubelit Y.I. 2019. Green tides: new consequences of the eutrophication of natural waters (invited review) // Contemp. Probl. Ecol. V. 12. P. 109. https://doi.org/10.1134/S1995425519020057
- Green L., Fong P. 2015. The good, the bad and the Ulva: the density dependent role of macroalgal subsidies in influencing diversity and trophic structure of an estuarine community // Oikos. V. 125. Iss. 7. P. 988. https://doi.org/10.1111/oik.02860
- Gubelit Y.I. 2022. Opportunistic macroalgae as a component in assessment of eutrophication // Diversity. V. 14. Iss. 12. P. 1112. https://doi.org/10.3390/d14121112
- Gordon D.M., McComb A.J. 1989. Growth and production of the green alga Cladophora montagneana in a eutrophic Australian estuary and its interpretation using a computer program // Water Res. V. 23. № 5. P. 633. https://doi.org/10.1016/0043-1354(89)90030-4
- Hansen A.T., Hondzo M., Sheng J., Sadowsky M.J. 2014. Microscale measurements reveal contrasting effects of photosynthesis and epiphytes on frictional drag on the surfaces of filamentous algae // Freshwater Biol. V. 59. Iss. 2. P. 312. https://doi.org/10.1111/fwb.12266
- Hardwick G.G., Blinn D.W., Usher H.D. 1992. Epiphytic diatoms on Cladophora glomerata in the Colorado River, Arizona: longitudinal and vertical distribution in a regulated river // The Southwestern Naturalist. V. 37. № 2. P. 148. https://doi.org/10.2307/3671663
- Haroon A.M., Hussian A.E., El-Sayed S.M. 2018. Deviations in the biochemical structure of some macroalgal species and their relation to the environmental conditions in Qarun Lake, Egypt // Egyptian J. Aquatic Res. V. 44. № 1. P. 15. https://doi.org/10.1016/j.ejar.2018.02.006
- Heinke J., Lannerstad M., Gerten D., et al. 2020. Water use in global livestock production—opportunities and constraints for increasing water productivity // Water Resources Res. V. 56. № 12. P. e2019WR026995.
- Herbst R.P. 1969. Ecological factors and the distribution of Cladophora glomerata in the Great Lakes // Am. Midl. Nat. V. 82. № 1. P. 90. https://doi.org/10.2307/2423819
- Higgins S.N., Howell E.T., Hecky R.E. et al. 2005. The wall of green: the status of Cladophora glomerata on the northern shores of Lake Erie's eastern basin, 1995–2002 // J. Great Lakes Res. V. 31. Iss. 4. P. 547. https://doi.org/10.1016/S0380-1330(05)70283-5
- Higgins S.N., Hecky R.E., Guildford S.J. 2006. Environmental controls on Cladophora growth dynamics in eastern Lake Erie: application of the Cladophora growth model (CGM) // J. Great Lakes Res. V. 32. Iss. 3. P. 629. https://doi.org/10.3394/0380-1330(2006)32[629:ECOCGD]2.0.CO;2
- Higgins S.N., Hecky R.E., Guildford S.J. 2008a. The collapse of benthic macroalgal blooms in response to self-shading // Freshwаter Biol. V. 53. Iss. 12. P. 2557. https://doi.org/10.1111/j.1365-2427.2008.02084.x
- Higgins S.N., Malkin S.Y., Howell E.T. et al. 2008b. An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes // J. Phycol. V. 44. Iss. 4. P. 839. https://doi.org/10.1111/j.1529-8817.2008.00538.x
- Hoffmann J.P., Graham L.E. 1984. Effects of selected physicochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta) // J. Phycol. V. 20. Iss. 1. P. 1. https://doi.org/10.1111/j.0022-3646.1984.00001.x
- Ibelings B.W., Mur L.R. 1992. Microprofiles of photosynthesis and oxygen concentration in Microcystis sp. scums // FEMS Microbiol. Lett. V. 86. Iss. 3. 195. https://doi.org/10.1111/j.1574-6968.1992.tb04810.x
- Ingrao C., Strippoli R., Lagioia G., Huisingh D. 2023. Water scarcity in agriculture: an overview of causes, impacts and approaches for reducing the risks // Heliyon. V. 9. Iss. 8. P. e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
- Irfanullah H.M., Moss B. 2005. A filamentous green algaedominated temperate shallow lake: variations on the theme of clear-water stable states? // Arch. Hydrobiol. V. 163. № 1. P. 25. https://doi.org/10.1127/0003-9136/2005/0163-0025
- Ivanova M., Balushkina E., Basova S. 1994. Structural functional reorganization of ecosystem of hyperhaline lake Saki (Crimea) at increased salinity // Rus. J. of Aquat. Ecol. V. 3. № 2. P. 111.
- Jessen G.L., Lichtschlag A., Ramette A. et al. 2017. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea) // Sci. Adv. V. 3. Iss. 2. P. e1601897. https://doi.org/10.1126/sciadv.1601897
- Jia Q., Liu X., Wang H. et al. 2017. Bio-ecological resources of saline lakes in Tibet and their economic prospect // Sci. and Technol. Rev. V. 35. № 2. P. 19.
- Jiang H.B., Qiu B.S. 2005. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) to prolonged UV-B exposure // J. Phycol. V. 41. Iss. 5. P. 983. https://doi.org/10.1111/j.1529-8817.2005.00126.x
- John D.M. 2002. Macroalgae associated with sabkha // Sabkha ecosytems – volume I, The Arabian Peninsula and Adjacent Countries. Dordrecht: Kluwer Acad. Publ. P. 239.
- Jones E. R., Bierkens M. F., van Vliet M. T. 2024. Current and future global water scarcity intensifies when accounting for surface water quality // Nature Climate Change. V. 14. № 6. P. 629.
- Kolesnikova E.A., Mazlumyan S.A., Shadrin N.V. 2008. Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea / The Firth International Conference of Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM). Chennai, India. P. 155.
- Krause-Jensen D., McGlathery K., Rysgaard S., Christensen P.B. 1996. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability // Mar. Ecol. Prog. Ser. V. 134. P. 207. https://doi.org/10.3354/meps134207
- Lassen C., Ploug H., Jorgensen B.B. 1992. Microalgal photosynthesis and spectral scalar irradiance in coastal marine sediments of Limfjorden, Denmark // Limnol., Oceanogr. V. 37. Iss. 4. P. 760. https://doi.org/10.4319/lo.1992.37.4.0760
- Lawson L., Degenstein L.M., Bates B. et al. 2022. Cellulose textiles from hemp biomass: Opportunities and challenges // Sustainability. V. 14. Iss. 22. P. 15337. https://doi.org/10.3390/su142215337
- Lenzi M., Renzi M., Nesti U. et al. 2011. Vegetation cyclic shift in eutrophic lagoon. Assessment of dystrophic risk indices based on standing crop evaluation // Estuar. Coast. Shelf. Sci. V. 132. P. 99. https://doi.org/10.1016/j.ecss.2011.10.006
- Lester W.W., Adams M.S., Farmer A.M. 1988. Effects of light and temperature on photosynthesis of the nuisance alga Cladophora glomerata (L.) Kutz from Green Bay, Lake Michigan // New Phytologist. V. 109. Iss. 1. P. 53. https://doi.org/10.1111/j.1469-8137.1988.tb00218.x
- Li T., Chen C., Brozena A.H. et al. 2021. Developing fibrillated cellulose as a sustainable technological material // Nature. V. 590. № 7844. P. 47. https://doi.org/10.1038/s41586-020-03167-7
- Liu X., Liu W., Tang Q. et al. 2022. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change // Earth’s Future. V. 10. Iss. 4. P. e2021EF002567. https://doi.org/10.1029/2021EF002567
- Malkin S.Y., Sorichetti R.J., Wiklund J.A., Hecky R.E. 2009. Seasonal abundance, community composition, and silica content of diatoms epiphytic on Cladophora glomerata // J. Great Lakes Res. V. 35. Iss. 2. P. 199. https://doi.org/10.1016/j.jglr.2008.12.008
- Mantai K.E. 1974. Some aspects of photosynthesis in Cladophora glomerata // J. Phycol. V. 10. Iss. 3. P. 288. https://doi.org/10.1111/j.1529-8817.1974.tb02716.x
- Marks J.C., Power M.E. 2001. Nutrient induced changes in the species composition of epiphytes on Cladophora glomerata Kutz. (Chlorophyta) // Hydrobiologia. V. 450. № 1. P. 187. https://doi.org/10.1023/A:1017596927664
- Messyasz B., Rybak A. 2011. Abiotic factors affecting the development of Ulva sp. (Ulvophyceae; Chlorophyta) in freshwater ecosystems // Aquat. Ecol. V. 45. № 1. P. 75. https://doi.org/10.1007/s10452-010-9333-9
- Messyasz B., Leska B., Fabrowska J. et al. 2015. Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry // Open Chem. V. 13. P. 1108. https://dx.doi.org/10.1515/chem-2015-0124
- Middelburg J.J., Levin L.A. 2009. Coastal hypoxia and sediment biogeochemistry // Biogeosciences. V. 6. P. 1273. https://doi.org/10.5194/bg-6-1273-2009
- Mihhels K., Yousefi N., Blomster J. et al. 2023. Assessment of the Alga Cladophora glomerata as a Source for Cellulose Nanocrystals // Biomacromolecules. V. 24. Iss. 11. P. 4672. https://doi.org/10.1021/acs.biomac.3c00380
- Mishra R.K. 2023. Fresh water availability and its global challenge // British Journal of Multidisciplinary and Advanced Studies. V. 4. №. 3. P. 1.
- Mpawenayo B., Mathooko J.M. 2005. The structure of diatom assemblages associated with Cladophora and sediments in a highland stream in Kenya // Hydrobiologia. V. 544. № 1. P. 55. https://doi.org/10.1007/s10750-004-8333-y
- Mukhanov V.S., Naidanova O.G., Shadrin N.V., Kemp R.B. 2004. The spring energy budget of the algal mat community in a Crimean hypersaline lake determined by microcalorimetry // Aquat. Ecol. V. 38. P. 375. https://doi.org/10.1023/B:AECO.0000035169.08581.10
- Muluneh M.G. 2021. Impact of climate change on biodiversity and food security: a global perspective a review article // Agriculture and Food Security. V. 10. № 1. P. 1.
- Munir M., Qureshi R., Bibi M., Khan A.M. 2019. Pharmaceutical aptitude of Cladophora: a comprehensive review // Algal Res. V. 39. P. 101476. https://doi.org/10.1016/j.algal.2019.101476
- Nutautaitė M., Vilienė V., Racevičiūtė–Stupelienė A. et al. 2021. Freshwater Cladophora glomerata biomass as promising protein and other essential nutrients source for high quality and more sustainable feed production // Agriculture. V. 11. Iss. 7. P. 582. https://doi.org/10.3390/agriculture11070582
- O'Neal S.W., Lembi C.A. 1983. Effect of simazine on photosynthesis and growth of filamentous algae // Weed Sci. V. 31. Iss. 6. P. 899. https://doi.org/10.1017/S0043174500070958
- Pan R., Cheung O., Wang Z. et al. 2016. Mesoporous Cladophora cellulose separators for lithium-ion batteries // J. Power Sources. V. 321. P. 185. https://doi.org/10.1016/j.jpowsour.2016.04.115
- Passarelli S., Free C.M., Shepon A. et al. 2024. Global estimation of dietary micronutrient inadequacies: a modelling analysis // The Lancet Global Health. V. 12. Iss. 10. P. e1590–e1599. https://doi.org/10.1016/S2214-109X(24)00276-6
- Peerapornpisal Y., Amornledpison D., Rujjanawate C. et al. 2006. Two endemic species of macroalgae in Nan River, northern Thailand, as therapeutic agents // Sci. Asia. V. 32. P. 71. https://doi.org/10.2306/scienceasia1513-1874.2006.32(s1).071
- Persincula M.R., Madrazo C.F. 2024. Cellulose extraction from Cladophora rupestris for extraction of nanomaterials // IOP Conference Series: Materials Science and Engineering. V. 1318. № 1. P. 012002. https://doi.org/10.1088/1757-899X/1318/1/012002
- Pikosz M., Messyasz B., Gąbka M. 2017. Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland // Ecol. Indic. V. 74. P. 1. https://doi.org/10.1016/j.ecolind.2016.09.041
- Prazukin A.V., Anufriieva E.V., Shadrin N.V. 2018. Cladophora mats in a Crimean hypersaline lake: structure, dynamics, and inhabiting animals // J. Oceanol. Limnol. V. 36. Iss. 6. P. 1930. https://doi.org/10.1007/s00343-018-7313-4
- Prazukin A.V., Anufriieva E.V., Shadrin N.V. 2020. Is biomass of filamentous green algae Cladophora spp. (Chlorophyta, Ulvophyceae) an unlimited cheap and valuable resource for medicine and pharmacology? A review // Rev. Aquac. V. 12. Iss. 4. P. 2493. https://doi.org/10.1111/raq.12454
- Prazukin A.V., Firsov Yu.K., Gureeva E.V. et al. 2021a. Biomass of green filamentous alga Cladophora (Chlorophyta) from a hypersaline lake in Crimea as a prospective source of lutein and other pigments // Algal Res. V. 54. Article no. 102195 (9 p.). https://doi.org/10.1016/j.algal.2021.102195
- Prazukin A., Shadrin N., Balycheva D. et al. 2021b. Cladophora spp. (Chlorophyta) modulate environment and create a habitat for microalgae in hypersaline waters // Eur. J. Phycol. V. 56. № 3. P. 231. https://doi.org/10.1080/09670262.2020.1814423
- Prazukin A.V., Lee R.I., Balycheva D.S. et al. 2023. Cladophora (Chlorophyta) as an ecological engineer in hypersaline lake Chersonesskoye: Distribution of diatom algae in the structured space of plant mats // Mar. Biol. J. V. 8. № 3. P. 62. https://doi.org/10.21072/mbj.2023.08.3.05
- Prazukin A.V., Anufriieva E.V., Shadrin N.V. 2024. Biomass of Cladophora (Chlorophyta, Cladophorales) is a promising resource for agriculture with high benefits for economics and the environment // Aquac. Int. V. 23. Iss. 3. P. 3637. https://doi.org/10.1007/s10499-023-01342-x
- Prazukin A., Shadrin N., Latushkin A., Anufriieva E. 2025. Mats of green filamentous alga Cladophora in the hypersaline Bay Sivash: distribution, structure, environmentforming role and resource potential // Reg. Stud. Mar. Sci. V. 82. Art. no. 104031 (12 p.). https://doi.org/10.1016/j.rsma.2025.104031
- Rozema J., Flowers T. 2008. Crops for a salinized world // Science. V. 322. № 5907. P. 1478.
- Saunders L.L., Kilham S.S., Winfield Fairchild G., Verb R. 2012. Effects of small-scale environmental variation on metaphyton condition and community composition // Freshwater Biol. V. 57. Iss. 9. P. 1884. https://doi.org/10.1111/j.1365-2427.2012.02851.x
- Scheffer M. 2001. Alternative attractors of shallow lakes // The Sci. World J. V. 1. P. 254. https://doi.org/10.1100/tsw.2001.62
- Scheffer M., Szabo S., Gragnani A. et al. 2003. Floating plant dominance as a stable state // Proceedings of the National Academy of Sciences. V. 100. № 7. P. 4040. https://doi.org/10.1073/pnas.073791810
- Shaalan M., El-Mahdy M., Saleh M. et al. 2018. Aquaculture in Egypt: insights on the current trends and future perspectives for sustainable development // Reviews in Fisheries Science and Aquaculture. V. 26. №1. P. 99.
- Shadrin N.V., Anufriieva E.V. 2013. Climate change impact on the marine lakes and their Crustaceans: The case of marine hypersaline Lake Bakalskoye (Ukraine) // Turk. J. Fish. Aquat. Sci. V. 13. P. 603. https://doi.org/10.4194/1303-2712-v13_4_05
- Shadrin N., Zheng M., Oren A. 2015. Past, present and future of saline lakes: research for global sustainable development // Chin. J. Oceanol. Limnol. V. 33. P. 1349. https://doi.org/10.1007/s00343-015-5157-8
- Shadrin N.V., Anufriieva E.V., Belyakov V.P., Bazhora A.I. 2017. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production // Eur. Zool. J. V. 84. № 1. P. 61. https://doi.org/10.1080/11250003.2016.1273974
- Shadrin N., Balycheva D., Anufriieva E. 2021a. Spatial and temporal variability of microphytobenthos in a marine hypersaline lake (Crimea): Are there some general patterns? // J. Sea Res. V. 177. Article no. 102121 (7 p.). https://doi.org/10.1016/j.seares.2021.102121
- Shadrin N., Balycheva D., Anufriieva E. 2021b. Microphytobenthos in the hypersaline water bodies, the case of Bay Sivash (Crimea): Is salinity the main determinant of species composition? // Water. V. 13. Iss. 11. Article no. 1542 (17 p.). https://doi.org/10.3390/w13111542
- Shadrin N., Latushkin A., Yakovenko V. et al. 2024. Daily and other short-term changes in the ecosystem components of the world's largest hypersaline lagoon Bay Sivash (Crimea) // Reg. Stud. Mar. Sci. 2024. V. 77. Art. no. 103643 (11 p.). https://doi.org/10.1016/j.rsma.2024.103643
- Shemer H., Wald S., Semiat R. 2023. Challenges and solutions for global water scarcity // Membranes. V. 13. № 6. P. 612.
- Skinner S., Entwisle T. J. 2004. Non-marine algae of Australia: 6. Cladophoraceae (Chlorophyta) // Telopea. V. 10. №3. P. 731.
- Song C., Cao X., Zhou Y., Shadrin N. 2017. Filamentous green algae, extracellular alkaline phosphatases and some features of the phosphorus cycle in ponds // Mar. Biol. J. V. 2. № 1. P. 66. https://doi.org/10.21072/mbj.2017.02.1.07
- Vass I. 1997. Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus // Handbook of photosynthesis. N.Y.: Marcel Dekker. P. 931.
- Vergara J.J., Perez-Llorens J.L., Peralta G. et al. 1997. Seasonal variation of photosynthetic performance and light attenuation in Ulva canopies from Palmones river estuary // J. Phycol. V. 33. Iss. 5. P. 773. https://doi.org/10.1111/j.0022-3646.1997.00773.x
- Vergara J.J., Sebastian M., Perez-Llorens J.L., Hernandez I. 1998. Photoacclimation of Ulva rigida and U. rotundata (Chlorophyta) arranged in canopies // Mar. Ecol. Prog. Ser. V. 165. P. 283. https://doi.org/10.3354/meps165283
- Viana C., Freire D., Abrantes P. et al. 2022. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review // Sci. Tot. Environ. V. 806. № 3. P. 150718.
- Wang Y., Zhou P., Zhou W, Wang J., Huang S., Ao H., Wu C., Li G. 2025. Structural diversity and environmental impacts of Cladophora mats in a large plateau brackish lake // Environ. Res. V. 278. P. 121674.
- Whitton B.A. 1970. Biology of Cladophora in freshwaters // Water Res. V. 4. Iss. 7. P. 457. https://doi.org/10.1016/0043-1354(70)90061-8
- Wood K.G. 1968. Photosynthesis of Cladophora under unnatural conditions // Algae, Man and the Environment. N.Y.: Syracuse University Press. P. 121.
- Wu Z., Yuan X., Xiong X. et al. 2024. Cladophora as ecological engineer: a new test from the largest lake of Qinghai-Tibet plateau with filamentous algal blooms // Water Biol. and Sec. V. 3. Iss. 1. P. 100210. https://doi.org/10.1016/j.watbs.2023.100210
- Yan J., Zhu J., Zhao S., Su F. 2023. Coastal wetland degradation and ecosystem service value change in the Yellow River Delta, China // Glob. Ecol. Conserv. V. 44. P. e02501. https://doi.org/10.1016/j.gecco.2023.e02501
- Yao F., Livneh B., Rajagopalan B. et al. 2023. Satellites reveal widespread decline in global lake water storage // Science. V. 380. № 6646. P. 743. https://doi.org/10.1126/science.abo2812
- Zafar A., Ali I., Rahayu F. 2022. Marine seaweeds (biofertilizer) significance in sustainable agricultural activities: a review // IOP Conf. Ser.: Earth Environ. Sci. V. 974. P. 012080. https://doi.org/10.1088/1755-1315/974/1/012080
- Zhang X., Lu X., Li H. 2021. Isolation and identification of a novel allelochemical from Ruppia maritima extract against the cyanobacteria Microcystis aeruginosa // Environ. Technol. and Innovat. V. 21. P. 101301.
- Zhou S., Nyholm L., Stromme M., Wang Z. 2019. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications // Acc. Chem. Res. V. 52. Iss. 8. P. 2232. https://doi.org/10.1021/acs.accounts.9b00215
- Zulkifly S.B., Graham J.M., Young E.B. et al. 2013. The genus Cladophora Kutzing (Ulvophyceae) as a globally distributed ecological engineer // J. Phycol. V. 49. Iss. 1. P. 1. https://doi.org/10.1111/jpy.12025
Arquivos suplementares

