ЗЕЛЕНЫЕ НИТЧАТЫЕ ВОДОРОСЛИ Cladophora spp. В ГИПЕРСОЛЕНЫХ ВОДОЕМАХ КРЫМА: ЭКОСИСТЕМНЫЕ ИНЖЕНЕРЫ И ЦЕННЫЙ РЕСУРС (ОБЗОР)
- Авторы: Празукин А.В1, Шадрин Н.В1, Фирсов Ю.К1, Ануфриева Е.В1
-
Учреждения:
- Федеральный исследовательский центр “Институт биологии южных морей им. А.О. Ковалевского Российской академии наук”
- Выпуск: Том 18, № 6 (2025)
- Страницы: 1069-1086
- Раздел: ФИТОПЛАНКТОН, ФИТОБЕНТОС, ФИТОПЕРИФИТОН
- URL: https://bakhtiniada.ru/0320-9652/article/view/362523
- DOI: https://doi.org/10.7868/S3034522725060075
- ID: 362523
Цитировать
Аннотация
Ключевые слова
Об авторах
А. В Празукин
Федеральный исследовательский центр “Институт биологии южных морей им. А.О. Ковалевского Российской академии наук”Севастополь, Россия
Н. В Шадрин
Федеральный исследовательский центр “Институт биологии южных морей им. А.О. Ковалевского Российской академии наук”Севастополь, Россия
Ю. К Фирсов
Федеральный исследовательский центр “Институт биологии южных морей им. А.О. Ковалевского Российской академии наук”Севастополь, Россия
Е. В Ануфриева
Федеральный исследовательский центр “Институт биологии южных морей им. А.О. Ковалевского Российской академии наук”
Email: lena_anufriieva@mail.ru
Севастополь, Россия
Список литературы
- Ануфриева Е.В., Шадрин Н.В. 2023. Жизнь в экстремальной среде. Животные в экосистемах гиперсоленых вод. М.: Тов-во науч. изданий КМК.
- Балушкина Е.В., Голубков С.М., Голубков М.С. и др. 2009. Влияние абиотических и биотических факторов на структурно-функциональную организацию экосистем соленых озер Крыма // Журн. общ. биол. Т. 70. № 6. С. 504.
- Голубков С.М., Шадрин Н.В., Голубков М.С. и др. 2018. Пищевые цепи и их динамика в экосистемах мелководных озер с различной соленостью воды // Экология. № 5. С. 391. https://doi.org/10.1134/S0367059718050050
- Губанов В.И., Бобко Н.И. 2012. Гидролого-гидрохимическая характеристика соляного озера на мысе Херсонес (Севастополь, Крым) // Мор. экол. журн. Т. 11. № 4. С. 18.
- Латышев С.Э. 2025. Фитомасса и продукция макрофитов в озерах Белорусского поозерья // Биология внутр. вод. Т. 18. № 2. С. 298.
- Неврова Е.Л., Шадрин Н.В. 2005. Донные диатомовые водоросли соленых озер Крыма // Мор. экол. журн. Т. 4. № 4. С. 61.
- Остапчук П.С., Шадрин Н.В., Празукин А.В. и др. 2025. Влияние добавок зеленой нитчатой водоросли Cladophora в рацион молодняка кроликов на их рост и развитие // Аграрный вестник Урала. Т. 25. № 1. С. 61. https://doi.org/10.32417/1997-4868-2025-25-01-61-73
- Павловская Т.М., Празукин А.В., Шадрин Н.В. 2009. Сезонные явления в сообществе инфузорий гиперсоленого озера Херсонесское (Крым) // Мор. экол. журн. Т. 8. № 2. С. 53.
- Празукин А.В., Бобкова А.Н., Евстигнеева И.К. и др. 2008. Структура и сезонная динамика фитокомпоненты биокосной системы морского гиперсоленого озера на мысе Херсонес (Крым) // Мор. экол. журн. Т. 7. № 1. С. 61.
- Празукин А.В. 2009. Фотосинтетическая активность растительного покрова Херсонесского озера (Крым) и его структурно- функциональная организация // Системы контроля окружающей среды: средства, информационные технологи и мониторинг. Сб. науч. тр. Севастополь: Мор. гидрофиз. ин-т. С. 370.
- Празукин А.В. 2015. Экологическая фитосистемология. М.: Перо.
- Празукин А.В., Ануфриева Е.В., Шадрин Н.В. 2019. Фотоситетическая активность матов нитчатых водорослей гиперсоленого озера Херсонесское (Крым) // Вестн. Твер. гос. ун-та. Серия: Биология и экология. № 2(54). С. 87. https://doi.org/10.26456/vtbio74
- Сеничева М.И., Губелит В., Празукин А.В., Шадрин Н.В. 2008. Фитопланктон гиперсоленых озер Крыма // Микроводоросли Черного моря: проблемы сохранения биоразнообразия и биотехнологического использования. Севастополь: ЭКОСИ-Гидрофизика. С. 93.
- Тооминг Х.Г. 1977. Солнечная радиация и формирование урожая. Л.: Гидрометеоиздат.
- Шадрин Н.В. 2024. Дополнительность общего и уникального, случайность и необходимость в экологии водоемов. М.: Тов-во науч. изданий КМК.
- Шадрин Н.В., Миходюк О.С., Найданова О.Г. и др. 2008. Донные цианобактерии гиперсоленых озер Крыма // Микроводоросли Черного моря: проблемы сохранения биоразнообразия и биотехнологического использования. Севастополь: ЭКОСИ-Гидрофизика. С. 100.
- Шадрин Н.В., Остапчук П.С., Куевда Т.А. и др. 2024. Влияние добавок нитчатой зеленой водоросли Cladophora в рацион кроликов на показатели крови // Аграрная наука Евро-Северо-Востока. Т. 25. № 6. С. 1137. https://doi.org/10.30766/2072-9081.2024.25.6.1137-1146
- Adla K., Dejan K., Neira D., Dragana Š. 2022. Degradation of ecosystems and loss of ecosystem services // One health. Cambridge: Acad. Press. P. 281. https://doi.org/10.1016/B978-0-12-822794-7.00008-3
- Andersson B., Salter A.H., Virgin I. et al. 1992. Photodamage to photosystem II – primary and secondary events // J. Photochem. Photobiol. B. V. 15. Iss. 1–2. P. 15. https://doi.org/10.1016/1011-1344(92)87003-R
- Anufriieva E.V. 2018. How can saline and hypersaline lakes contribute to aquaculture development? A review // J. Oceanol. Limnol. V. 36. Iss. 6. P. 2002. https://doi.org/10.1007/s00343-018-7306-3
- Attia-Ismail S.A. 2022. Halophytic plants for animal feed: associated botanical and nutritional characteristics. Bentham Science Publishers. https://doi.org/10.2174/97898150503871220101
- Bader Q.A., Al-Sharify Z.T., Dhabab J.M. et al. 2024. Cellulose nanomaterials in oil and gas industry and bio-manufacture: Current situation and future outlook // Case Studies in Chemical and Environmental Engineering. V. 10. P. 100993. https://doi.org/10.1016/j.cscee.2024.100993
- Balycheva D., Anufriieva E., Lee R. et al. 2023. Salinitydependent species richness of Bacillariophyta in hypersaline environments // Water. V. 15. Iss. 12. Art. no. 2252 (11 p.). https://doi.org/10.3390/w15122252
- Berner T., Dubinsky Z., Wyman K., Falkowski P.G. 1989. Photoadaptation and the “package” effect in Dunaliella teriolecta (Chlorophyceae) // J. Phycol. V. 25. Iss. 1. P. 70. https://doi.org/10.1111/j.0022-3646.1989.00070.x
- Berry H.A., Lembi C.A. 2000. Effects of temperature and irradiance on the seasonal variation of a Spirogyra (Chlorophyta) population in a midwestern lake (USA) // J. Phycol. V. 36. Iss. 5. P. 841. https://doi.org/10.1046/j.1529-8817.2000.99138.x
- Binzer T., Sand-Jensen K., Middelboe A. 2006. Community photosynthesis of macrophytes // Limnol., Oceanogr. V. 51. Iss. 6. P. 2722. https://doi.org/10.4319/lo.2006.51.6.2722
- Bischof K., Rautenberger R., Brey L., Perez-Llorens J.L. 2006. Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain // Mar. Ecol. Prog. Ser. V. 306. P. 165. https://doi.org/10.3354/meps306165
- Bo Y., Zhou F., Zhao J. et al. 2021. Additional surface-water deficit to meet global universal water accessibility by 2030 // J. Clean. Prod. V. 320. P. 128829. https://doi.org/10.1016/j.jclepro.2021.128829
- Canale R.P., Auer M.T. 1982. Ecological studies and mathematical modeling of Cladophora in Lake Huron: 7. Model verification and system response // J. Great Lakes Res. V. 8. Iss. 1. P. 134. https://doi.org/10.1016/S0380-1330(82)71951-3
- Chudyba H. 1965. Cladophora glomerata and accompanying algae in the Skawa River // Acta Hydrobiologica. V. 7(1). P. 93.
- Davis J.A., McGuire M., Halse S.A. et al. 2003. What happens when you add salt: predicting impacts of secondary salinisation on shallow aquatic ecosystems by using an alternative-states model // Aust. J. Bot. V. 51. № 6. P. 715. https://doi.org/10.1071/BT02117
- Dodds W.K., Gudder D.A. 1992. The ecology of Cladophora // J. Phycol. V. 28. Iss. 4. P. 415. https://doi.org/10.1111/j.0022-3646.1992.00415.x
- Dodds W.K., Biggs B.J., Lowe R.L. 1999. Photosynthesis– irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure // J. Phycol. V. 35. Iss. 1. P. 42. https://doi.org/10.1046/j.1529-8817.1999.3510042.x
- Eiseltova M., Pokorny J. 1994. Filamentous algae in fish ponds of the Třeboň Biosphere Reserve-ecophysiological study // Vegetatio. V. 113. № 2. P. 155. https://doi.org/10.1007/BF00044232
- Ensminger I., Xylander M., Hagen C., Braune W. 2001. Strategies providing success in a variable habitat: III. Dynamic control of photosynthesis in Cladophora glomerata // Plant. Cell. Environ. V. 24. Iss. 8. P. 769. https://doi.org/10.1046/j.1365-3040.2001.00725.x
- Gladyshev M.I., Gubelit Y.I. 2019. Green tides: new consequences of the eutrophication of natural waters (invited review) // Contemp. Probl. Ecol. V. 12. P. 109. https://doi.org/10.1134/S1995425519020057
- Green L., Fong P. 2015. The good, the bad and the Ulva: the density dependent role of macroalgal subsidies in influencing diversity and trophic structure of an estuarine community // Oikos. V. 125. Iss. 7. P. 988. https://doi.org/10.1111/oik.02860
- Gubelit Y.I. 2022. Opportunistic macroalgae as a component in assessment of eutrophication // Diversity. V. 14. Iss. 12. P. 1112. https://doi.org/10.3390/d14121112
- Gordon D.M., McComb A.J. 1989. Growth and production of the green alga Cladophora montagneana in a eutrophic Australian estuary and its interpretation using a computer program // Water Res. V. 23. № 5. P. 633. https://doi.org/10.1016/0043-1354(89)90030-4
- Hansen A.T., Hondzo M., Sheng J., Sadowsky M.J. 2014. Microscale measurements reveal contrasting effects of photosynthesis and epiphytes on frictional drag on the surfaces of filamentous algae // Freshwater Biol. V. 59. Iss. 2. P. 312. https://doi.org/10.1111/fwb.12266
- Hardwick G.G., Blinn D.W., Usher H.D. 1992. Epiphytic diatoms on Cladophora glomerata in the Colorado River, Arizona: longitudinal and vertical distribution in a regulated river // The Southwestern Naturalist. V. 37. № 2. P. 148. https://doi.org/10.2307/3671663
- Haroon A.M., Hussian A.E., El-Sayed S.M. 2018. Deviations in the biochemical structure of some macroalgal species and their relation to the environmental conditions in Qarun Lake, Egypt // Egyptian J. Aquatic Res. V. 44. № 1. P. 15. https://doi.org/10.1016/j.ejar.2018.02.006
- Heinke J., Lannerstad M., Gerten D., et al. 2020. Water use in global livestock production—opportunities and constraints for increasing water productivity // Water Resources Res. V. 56. № 12. P. e2019WR026995.
- Herbst R.P. 1969. Ecological factors and the distribution of Cladophora glomerata in the Great Lakes // Am. Midl. Nat. V. 82. № 1. P. 90. https://doi.org/10.2307/2423819
- Higgins S.N., Howell E.T., Hecky R.E. et al. 2005. The wall of green: the status of Cladophora glomerata on the northern shores of Lake Erie's eastern basin, 1995–2002 // J. Great Lakes Res. V. 31. Iss. 4. P. 547. https://doi.org/10.1016/S0380-1330(05)70283-5
- Higgins S.N., Hecky R.E., Guildford S.J. 2006. Environmental controls on Cladophora growth dynamics in eastern Lake Erie: application of the Cladophora growth model (CGM) // J. Great Lakes Res. V. 32. Iss. 3. P. 629. https://doi.org/10.3394/0380-1330(2006)32[629:ECOCGD]2.0.CO;2
- Higgins S.N., Hecky R.E., Guildford S.J. 2008a. The collapse of benthic macroalgal blooms in response to self-shading // Freshwаter Biol. V. 53. Iss. 12. P. 2557. https://doi.org/10.1111/j.1365-2427.2008.02084.x
- Higgins S.N., Malkin S.Y., Howell E.T. et al. 2008b. An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes // J. Phycol. V. 44. Iss. 4. P. 839. https://doi.org/10.1111/j.1529-8817.2008.00538.x
- Hoffmann J.P., Graham L.E. 1984. Effects of selected physicochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta) // J. Phycol. V. 20. Iss. 1. P. 1. https://doi.org/10.1111/j.0022-3646.1984.00001.x
- Ibelings B.W., Mur L.R. 1992. Microprofiles of photosynthesis and oxygen concentration in Microcystis sp. scums // FEMS Microbiol. Lett. V. 86. Iss. 3. 195. https://doi.org/10.1111/j.1574-6968.1992.tb04810.x
- Ingrao C., Strippoli R., Lagioia G., Huisingh D. 2023. Water scarcity in agriculture: an overview of causes, impacts and approaches for reducing the risks // Heliyon. V. 9. Iss. 8. P. e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
- Irfanullah H.M., Moss B. 2005. A filamentous green algaedominated temperate shallow lake: variations on the theme of clear-water stable states? // Arch. Hydrobiol. V. 163. № 1. P. 25. https://doi.org/10.1127/0003-9136/2005/0163-0025
- Ivanova M., Balushkina E., Basova S. 1994. Structural functional reorganization of ecosystem of hyperhaline lake Saki (Crimea) at increased salinity // Rus. J. of Aquat. Ecol. V. 3. № 2. P. 111.
- Jessen G.L., Lichtschlag A., Ramette A. et al. 2017. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea) // Sci. Adv. V. 3. Iss. 2. P. e1601897. https://doi.org/10.1126/sciadv.1601897
- Jia Q., Liu X., Wang H. et al. 2017. Bio-ecological resources of saline lakes in Tibet and their economic prospect // Sci. and Technol. Rev. V. 35. № 2. P. 19.
- Jiang H.B., Qiu B.S. 2005. Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) to prolonged UV-B exposure // J. Phycol. V. 41. Iss. 5. P. 983. https://doi.org/10.1111/j.1529-8817.2005.00126.x
- John D.M. 2002. Macroalgae associated with sabkha // Sabkha ecosytems – volume I, The Arabian Peninsula and Adjacent Countries. Dordrecht: Kluwer Acad. Publ. P. 239.
- Jones E. R., Bierkens M. F., van Vliet M. T. 2024. Current and future global water scarcity intensifies when accounting for surface water quality // Nature Climate Change. V. 14. № 6. P. 629.
- Kolesnikova E.A., Mazlumyan S.A., Shadrin N.V. 2008. Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea / The Firth International Conference of Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM). Chennai, India. P. 155.
- Krause-Jensen D., McGlathery K., Rysgaard S., Christensen P.B. 1996. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability // Mar. Ecol. Prog. Ser. V. 134. P. 207. https://doi.org/10.3354/meps134207
- Lassen C., Ploug H., Jorgensen B.B. 1992. Microalgal photosynthesis and spectral scalar irradiance in coastal marine sediments of Limfjorden, Denmark // Limnol., Oceanogr. V. 37. Iss. 4. P. 760. https://doi.org/10.4319/lo.1992.37.4.0760
- Lawson L., Degenstein L.M., Bates B. et al. 2022. Cellulose textiles from hemp biomass: Opportunities and challenges // Sustainability. V. 14. Iss. 22. P. 15337. https://doi.org/10.3390/su142215337
- Lenzi M., Renzi M., Nesti U. et al. 2011. Vegetation cyclic shift in eutrophic lagoon. Assessment of dystrophic risk indices based on standing crop evaluation // Estuar. Coast. Shelf. Sci. V. 132. P. 99. https://doi.org/10.1016/j.ecss.2011.10.006
- Lester W.W., Adams M.S., Farmer A.M. 1988. Effects of light and temperature on photosynthesis of the nuisance alga Cladophora glomerata (L.) Kutz from Green Bay, Lake Michigan // New Phytologist. V. 109. Iss. 1. P. 53. https://doi.org/10.1111/j.1469-8137.1988.tb00218.x
- Li T., Chen C., Brozena A.H. et al. 2021. Developing fibrillated cellulose as a sustainable technological material // Nature. V. 590. № 7844. P. 47. https://doi.org/10.1038/s41586-020-03167-7
- Liu X., Liu W., Tang Q. et al. 2022. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change // Earth’s Future. V. 10. Iss. 4. P. e2021EF002567. https://doi.org/10.1029/2021EF002567
- Malkin S.Y., Sorichetti R.J., Wiklund J.A., Hecky R.E. 2009. Seasonal abundance, community composition, and silica content of diatoms epiphytic on Cladophora glomerata // J. Great Lakes Res. V. 35. Iss. 2. P. 199. https://doi.org/10.1016/j.jglr.2008.12.008
- Mantai K.E. 1974. Some aspects of photosynthesis in Cladophora glomerata // J. Phycol. V. 10. Iss. 3. P. 288. https://doi.org/10.1111/j.1529-8817.1974.tb02716.x
- Marks J.C., Power M.E. 2001. Nutrient induced changes in the species composition of epiphytes on Cladophora glomerata Kutz. (Chlorophyta) // Hydrobiologia. V. 450. № 1. P. 187. https://doi.org/10.1023/A:1017596927664
- Messyasz B., Rybak A. 2011. Abiotic factors affecting the development of Ulva sp. (Ulvophyceae; Chlorophyta) in freshwater ecosystems // Aquat. Ecol. V. 45. № 1. P. 75. https://doi.org/10.1007/s10452-010-9333-9
- Messyasz B., Leska B., Fabrowska J. et al. 2015. Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry // Open Chem. V. 13. P. 1108. https://dx.doi.org/10.1515/chem-2015-0124
- Middelburg J.J., Levin L.A. 2009. Coastal hypoxia and sediment biogeochemistry // Biogeosciences. V. 6. P. 1273. https://doi.org/10.5194/bg-6-1273-2009
- Mihhels K., Yousefi N., Blomster J. et al. 2023. Assessment of the Alga Cladophora glomerata as a Source for Cellulose Nanocrystals // Biomacromolecules. V. 24. Iss. 11. P. 4672. https://doi.org/10.1021/acs.biomac.3c00380
- Mishra R.K. 2023. Fresh water availability and its global challenge // British Journal of Multidisciplinary and Advanced Studies. V. 4. №. 3. P. 1.
- Mpawenayo B., Mathooko J.M. 2005. The structure of diatom assemblages associated with Cladophora and sediments in a highland stream in Kenya // Hydrobiologia. V. 544. № 1. P. 55. https://doi.org/10.1007/s10750-004-8333-y
- Mukhanov V.S., Naidanova O.G., Shadrin N.V., Kemp R.B. 2004. The spring energy budget of the algal mat community in a Crimean hypersaline lake determined by microcalorimetry // Aquat. Ecol. V. 38. P. 375. https://doi.org/10.1023/B:AECO.0000035169.08581.10
- Muluneh M.G. 2021. Impact of climate change on biodiversity and food security: a global perspective a review article // Agriculture and Food Security. V. 10. № 1. P. 1.
- Munir M., Qureshi R., Bibi M., Khan A.M. 2019. Pharmaceutical aptitude of Cladophora: a comprehensive review // Algal Res. V. 39. P. 101476. https://doi.org/10.1016/j.algal.2019.101476
- Nutautaitė M., Vilienė V., Racevičiūtė–Stupelienė A. et al. 2021. Freshwater Cladophora glomerata biomass as promising protein and other essential nutrients source for high quality and more sustainable feed production // Agriculture. V. 11. Iss. 7. P. 582. https://doi.org/10.3390/agriculture11070582
- O'Neal S.W., Lembi C.A. 1983. Effect of simazine on photosynthesis and growth of filamentous algae // Weed Sci. V. 31. Iss. 6. P. 899. https://doi.org/10.1017/S0043174500070958
- Pan R., Cheung O., Wang Z. et al. 2016. Mesoporous Cladophora cellulose separators for lithium-ion batteries // J. Power Sources. V. 321. P. 185. https://doi.org/10.1016/j.jpowsour.2016.04.115
- Passarelli S., Free C.M., Shepon A. et al. 2024. Global estimation of dietary micronutrient inadequacies: a modelling analysis // The Lancet Global Health. V. 12. Iss. 10. P. e1590–e1599. https://doi.org/10.1016/S2214-109X(24)00276-6
- Peerapornpisal Y., Amornledpison D., Rujjanawate C. et al. 2006. Two endemic species of macroalgae in Nan River, northern Thailand, as therapeutic agents // Sci. Asia. V. 32. P. 71. https://doi.org/10.2306/scienceasia1513-1874.2006.32(s1).071
- Persincula M.R., Madrazo C.F. 2024. Cellulose extraction from Cladophora rupestris for extraction of nanomaterials // IOP Conference Series: Materials Science and Engineering. V. 1318. № 1. P. 012002. https://doi.org/10.1088/1757-899X/1318/1/012002
- Pikosz M., Messyasz B., Gąbka M. 2017. Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland // Ecol. Indic. V. 74. P. 1. https://doi.org/10.1016/j.ecolind.2016.09.041
- Prazukin A.V., Anufriieva E.V., Shadrin N.V. 2018. Cladophora mats in a Crimean hypersaline lake: structure, dynamics, and inhabiting animals // J. Oceanol. Limnol. V. 36. Iss. 6. P. 1930. https://doi.org/10.1007/s00343-018-7313-4
- Prazukin A.V., Anufriieva E.V., Shadrin N.V. 2020. Is biomass of filamentous green algae Cladophora spp. (Chlorophyta, Ulvophyceae) an unlimited cheap and valuable resource for medicine and pharmacology? A review // Rev. Aquac. V. 12. Iss. 4. P. 2493. https://doi.org/10.1111/raq.12454
- Prazukin A.V., Firsov Yu.K., Gureeva E.V. et al. 2021a. Biomass of green filamentous alga Cladophora (Chlorophyta) from a hypersaline lake in Crimea as a prospective source of lutein and other pigments // Algal Res. V. 54. Article no. 102195 (9 p.). https://doi.org/10.1016/j.algal.2021.102195
- Prazukin A., Shadrin N., Balycheva D. et al. 2021b. Cladophora spp. (Chlorophyta) modulate environment and create a habitat for microalgae in hypersaline waters // Eur. J. Phycol. V. 56. № 3. P. 231. https://doi.org/10.1080/09670262.2020.1814423
- Prazukin A.V., Lee R.I., Balycheva D.S. et al. 2023. Cladophora (Chlorophyta) as an ecological engineer in hypersaline lake Chersonesskoye: Distribution of diatom algae in the structured space of plant mats // Mar. Biol. J. V. 8. № 3. P. 62. https://doi.org/10.21072/mbj.2023.08.3.05
- Prazukin A.V., Anufriieva E.V., Shadrin N.V. 2024. Biomass of Cladophora (Chlorophyta, Cladophorales) is a promising resource for agriculture with high benefits for economics and the environment // Aquac. Int. V. 23. Iss. 3. P. 3637. https://doi.org/10.1007/s10499-023-01342-x
- Prazukin A., Shadrin N., Latushkin A., Anufriieva E. 2025. Mats of green filamentous alga Cladophora in the hypersaline Bay Sivash: distribution, structure, environmentforming role and resource potential // Reg. Stud. Mar. Sci. V. 82. Art. no. 104031 (12 p.). https://doi.org/10.1016/j.rsma.2025.104031
- Rozema J., Flowers T. 2008. Crops for a salinized world // Science. V. 322. № 5907. P. 1478.
- Saunders L.L., Kilham S.S., Winfield Fairchild G., Verb R. 2012. Effects of small-scale environmental variation on metaphyton condition and community composition // Freshwater Biol. V. 57. Iss. 9. P. 1884. https://doi.org/10.1111/j.1365-2427.2012.02851.x
- Scheffer M. 2001. Alternative attractors of shallow lakes // The Sci. World J. V. 1. P. 254. https://doi.org/10.1100/tsw.2001.62
- Scheffer M., Szabo S., Gragnani A. et al. 2003. Floating plant dominance as a stable state // Proceedings of the National Academy of Sciences. V. 100. № 7. P. 4040. https://doi.org/10.1073/pnas.073791810
- Shaalan M., El-Mahdy M., Saleh M. et al. 2018. Aquaculture in Egypt: insights on the current trends and future perspectives for sustainable development // Reviews in Fisheries Science and Aquaculture. V. 26. №1. P. 99.
- Shadrin N.V., Anufriieva E.V. 2013. Climate change impact on the marine lakes and their Crustaceans: The case of marine hypersaline Lake Bakalskoye (Ukraine) // Turk. J. Fish. Aquat. Sci. V. 13. P. 603. https://doi.org/10.4194/1303-2712-v13_4_05
- Shadrin N., Zheng M., Oren A. 2015. Past, present and future of saline lakes: research for global sustainable development // Chin. J. Oceanol. Limnol. V. 33. P. 1349. https://doi.org/10.1007/s00343-015-5157-8
- Shadrin N.V., Anufriieva E.V., Belyakov V.P., Bazhora A.I. 2017. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production // Eur. Zool. J. V. 84. № 1. P. 61. https://doi.org/10.1080/11250003.2016.1273974
- Shadrin N., Balycheva D., Anufriieva E. 2021a. Spatial and temporal variability of microphytobenthos in a marine hypersaline lake (Crimea): Are there some general patterns? // J. Sea Res. V. 177. Article no. 102121 (7 p.). https://doi.org/10.1016/j.seares.2021.102121
- Shadrin N., Balycheva D., Anufriieva E. 2021b. Microphytobenthos in the hypersaline water bodies, the case of Bay Sivash (Crimea): Is salinity the main determinant of species composition? // Water. V. 13. Iss. 11. Article no. 1542 (17 p.). https://doi.org/10.3390/w13111542
- Shadrin N., Latushkin A., Yakovenko V. et al. 2024. Daily and other short-term changes in the ecosystem components of the world's largest hypersaline lagoon Bay Sivash (Crimea) // Reg. Stud. Mar. Sci. 2024. V. 77. Art. no. 103643 (11 p.). https://doi.org/10.1016/j.rsma.2024.103643
- Shemer H., Wald S., Semiat R. 2023. Challenges and solutions for global water scarcity // Membranes. V. 13. № 6. P. 612.
- Skinner S., Entwisle T. J. 2004. Non-marine algae of Australia: 6. Cladophoraceae (Chlorophyta) // Telopea. V. 10. №3. P. 731.
- Song C., Cao X., Zhou Y., Shadrin N. 2017. Filamentous green algae, extracellular alkaline phosphatases and some features of the phosphorus cycle in ponds // Mar. Biol. J. V. 2. № 1. P. 66. https://doi.org/10.21072/mbj.2017.02.1.07
- Vass I. 1997. Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus // Handbook of photosynthesis. N.Y.: Marcel Dekker. P. 931.
- Vergara J.J., Perez-Llorens J.L., Peralta G. et al. 1997. Seasonal variation of photosynthetic performance and light attenuation in Ulva canopies from Palmones river estuary // J. Phycol. V. 33. Iss. 5. P. 773. https://doi.org/10.1111/j.0022-3646.1997.00773.x
- Vergara J.J., Sebastian M., Perez-Llorens J.L., Hernandez I. 1998. Photoacclimation of Ulva rigida and U. rotundata (Chlorophyta) arranged in canopies // Mar. Ecol. Prog. Ser. V. 165. P. 283. https://doi.org/10.3354/meps165283
- Viana C., Freire D., Abrantes P. et al. 2022. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review // Sci. Tot. Environ. V. 806. № 3. P. 150718.
- Wang Y., Zhou P., Zhou W, Wang J., Huang S., Ao H., Wu C., Li G. 2025. Structural diversity and environmental impacts of Cladophora mats in a large plateau brackish lake // Environ. Res. V. 278. P. 121674.
- Whitton B.A. 1970. Biology of Cladophora in freshwaters // Water Res. V. 4. Iss. 7. P. 457. https://doi.org/10.1016/0043-1354(70)90061-8
- Wood K.G. 1968. Photosynthesis of Cladophora under unnatural conditions // Algae, Man and the Environment. N.Y.: Syracuse University Press. P. 121.
- Wu Z., Yuan X., Xiong X. et al. 2024. Cladophora as ecological engineer: a new test from the largest lake of Qinghai-Tibet plateau with filamentous algal blooms // Water Biol. and Sec. V. 3. Iss. 1. P. 100210. https://doi.org/10.1016/j.watbs.2023.100210
- Yan J., Zhu J., Zhao S., Su F. 2023. Coastal wetland degradation and ecosystem service value change in the Yellow River Delta, China // Glob. Ecol. Conserv. V. 44. P. e02501. https://doi.org/10.1016/j.gecco.2023.e02501
- Yao F., Livneh B., Rajagopalan B. et al. 2023. Satellites reveal widespread decline in global lake water storage // Science. V. 380. № 6646. P. 743. https://doi.org/10.1126/science.abo2812
- Zafar A., Ali I., Rahayu F. 2022. Marine seaweeds (biofertilizer) significance in sustainable agricultural activities: a review // IOP Conf. Ser.: Earth Environ. Sci. V. 974. P. 012080. https://doi.org/10.1088/1755-1315/974/1/012080
- Zhang X., Lu X., Li H. 2021. Isolation and identification of a novel allelochemical from Ruppia maritima extract against the cyanobacteria Microcystis aeruginosa // Environ. Technol. and Innovat. V. 21. P. 101301.
- Zhou S., Nyholm L., Stromme M., Wang Z. 2019. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications // Acc. Chem. Res. V. 52. Iss. 8. P. 2232. https://doi.org/10.1021/acs.accounts.9b00215
- Zulkifly S.B., Graham J.M., Young E.B. et al. 2013. The genus Cladophora Kutzing (Ulvophyceae) as a globally distributed ecological engineer // J. Phycol. V. 49. Iss. 1. P. 1. https://doi.org/10.1111/jpy.12025
Дополнительные файлы


