


Volume 90, Nº 9 (2016)
- Ano: 2016
- Artigos: 33
- URL: https://bakhtiniada.ru/0036-0244/issue/view/10291
Chemical Thermodynamics and Thermochemistry
Molecular dynamics simulation of the structure and thermodynamic properties of liquid rubidium at pressures of up to 10 GPa and temperatures of up to 3500 K
Resumo
The models of rubidium at temperatures of up to 3500 K, degrees of compression of up to Y = V/V0 = 0.3, and pressures of up to 32 GPa were constructed by molecular dynamics (MD) using the interparticle potential ЕАМ. The thermodynamic properties of the MD models agree satisfactorily with experiment in the range of parameters under study at rubidium densities higher than 0.86 g/cm3. The behavior of the models in the range of the van der Waals loop was analyzed; the calculated critical temperature of rubidium Tc is ∼2250 ± 25 K, density ∼0.41 g/cm3, pressure ∼0.019 GPa, and compressibility factor Z = pV/RT ≈ 0.137. The states with the unity factor Z = 1 were observed at pressures of up to 0.30 GPa (at ∼3000 K); the temperature dependence of the density of the models with Z = 1 is nearly linear, and the Boyle temperature is TB ≈ 10160 K. The ratio Tc/TB = 0.221 is close to this value for cesium (0.23) and mercury (0.276). In the temperature and pressure ranges under study, the inversion of the Joule–Thomson coefficient did not take place, but should be observed at pressures of ⩽0.3 GPa and elevated temperatures. It was found that the diffusion coefficient D(T) dependences do not straighten in the usually used coordinates within wide temperature ranges. It was concluded that the structure of the liquid smoothly changes when the rubidium models are compressed and this reveals in the change of the degree of asymmetry of the first peak of the radial distribution function.



Isobaric vapor–liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa
Resumo
In this paper the results of the vapor–liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn’t.



Chemical Kinetics and Catalysis
Destabilization kinetics of polyvinylpyrrolidone-iodine in a field of low frequency impacts
Resumo
Experimental results on the destabilization kinetics of compounds with chelate structure (polyvinylpyrrolidone-iodine) in the field of the impact of low-frequency vibrations (from 2 to 45 Hz) are presented. The optimum frequencies at which the process rate is greatest are found for different impact modes. Based on the experimental data, conclusions are drawn as to the effect the energy of low-frequency impacts has on the studied clathrate and chelate structures.



Carboxylation of 2-methylbutyn-3-ol-2 on Ag- and Cu-containing catalysts
Resumo
The analysis of the products of direct carboxylation of 2-methylbutyn-3-ol-2 with carbon dioxide on Ag- and Cu-containing catalysts by 1Н and 13С NMR and FTIR spectroscopy showed that the desired 4-hydroxy-4-methylpent-2-ynoic acid did not form under the given conditions; instead, the triple bond of the substrate decomposed, and two polyfunctional acids formed: 4-hydroxy-4-methyl-3-oxopentanoic and 3,4-dihydroxy-4-methylpent-2-enic (the latter is the result of the keto-enol rearrangement of the former keto acid).



Reactivity of bromoalkanes in reactions of coordinated molecular decay
Resumo
The results from experiments on reactions of the coordinated molecular decay of RBr bromoalkanes on olefin and HBr are analyzed using the model of intersecting parabolas (MIP). Kinetic parameters within the MIP are calculated from the experimental data, enabling calculation of the activation energies (E) and rate constants (k) of such reactions, based on the enthalphy of the reaction and the MIP algorithms. The factors affecting the E of the RBr decay reaction are established: the enthalphy of the reaction, triplet repulsion, the energy of radical R• stabilization, the presence of a π bond adjacent to the reaction center, and the dipole–dipole interaction of polar groups. The energy spectrum of the partial energies of activation is constructed for the reaction of coordinated molecular decay of RBr, and the E and k of inverse addition reactions are evaluated.



A new hydrocarbon material based on seabuckthorn (Hippophae rhamnoides) sawdust: A structural promoter of cobalt catalyst for Fischer–Tropsch synthesis
Resumo
Aspects of the physicochemical properties of a hydrocarbon material based on seabuckthorn (Hippophae rhamnoides) sawdust are studied. The use of a hydrocarbon material based on sea buckthorn sawdust as a structural promoter of Со/CHip cobalt catalyst in the reaction of CO hydrogenation is shown to require an additional cycling stage in the mode of reduction and oxidation. The resulting mean size of the Co particles is found to be 18–19 nm and is considered acceptable for the synthesis of С5+ liquid hydrocarbons.



Palladium-containing graphene-like material: Synthesis and catalytic activity
Resumo
A graphene-like material with surface amine groups is obtained by graphite oxide reduction with ethylenediamine. A catalyst for the hydrogenation of nitrocompounds and unsaturated hydrocarbons is created by depositing Pd nanoparticles on the graphene material. The aliphatic chain is found to prevent agglomeration of the graphene sheets, while the amine groups form the growth centers of palladium nanoparticles, allowing their uniform distribution and small size.



Features of propane conversion in the presence of SmVO3 and SmVO4
Resumo
Features of propane conversion in the presence of samarium vanadite and samarium vanadate, both produced via solid-phase synthesis, are studied. It is shown that SmVO3 catalyzes mainly the propane cracking process to form methane and ethylene, while SmVO4 equally accelerates both cracking and the dehydrogenation of propane. Based on the results from catalytic experiments, energies of activation are calculated for the thermal cracking of propane (104 kJ/mol) and the conversion of propane in the presence of SmVO3 (39 kJ/mol) and SmVO4 (42 kJ/mol). The thermal stability of SmVO4 in a hydrogen atmosphere is studied via temperature-programmed reduction, while SmVO3 stability in an oxidizing environment is studied by DTA. Energies of activation for the reduction of SmVO4 (75 kJ/mol) and the oxidation of SmVO3 (244 kJ/mol) are calculated using the Kissinger method.



Kinetics of ruthenium(III) catalyzed and uncatalyzed oxidation of monoethanolamine by N-bromosuccinimide
Resumo
Kinetics of uncatalyzed and ruthenium(III) catalyzed oxidation of monoethanolamine by N-bromosuccinimide (NBS) has been studied in an aqueous acetic acid medium in the presence of sodium acetate and perchloric acid, respectively. In the uncatalyzed oxidation the kinetic orders are: the first order in NBS, a fractional order in the substrate. The rate of the reaction increased with an increase in the sodium acetate concentration and decreased with an increase in the perchloric acid concentration. This indicates that free amine molecules are the reactive species. Addition of halide ions results in a decrease in the kinetic rate, which is noteworthy. Both in absence and presence of a catalyst, a decrease in the dielectric constant of the medium decreases the kinetic rate pointing out that these are dipole—dipole reactions. A relatively higher oxidation state of ruthenium i.e., Ru(V) was found to be the active species in Ru(III) catalyzed reactions. A suitable mechanism consistent with the observations has been proposed and a rate law has been derived to explain the kinetic orders.



Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol
Resumo
Catalysts based on pillared clays with Zr and/or Al and Ce–Zr and/or Al polycations have been synthesized from a Tunisian bentonite and tested in catalytic oxidation of phenol at 298 K. The Zr-pillared clay showed higher activity than the Al-one in phenol oxidation. Mixed Zr–Al pillars lead to an enhancement of the catalytic activity due to the modification of the zirconium properties. The clays modified with Ce showed high conversions of phenol and TOC thus showing to be very selective towards the formation of CO2 and H2O.



Physical Chemistry of Solutions
Standard thermodynamic functions of complexation between copper(II) and glycine and L-histidine in aqueous solutions
Resumo
The Cu2+–glycine–L-histidine system is studied calorimetrically at 298.15 K and an ionic strength of 0.2, 0.5, and 1.0 in aqueous solutions containing potassium nitrate. The standard thermodynamic parameters (ΔrH°, ΔrG°, ΔrS°) of complexation processes are determined.



Solvation of decane and benzene in mixtures of 1-octanol and N,N-dimethylformamide
Resumo
The heats of dissolution of decane and benzene in a model system of octanol-1 (OctOH) and N,N-dimethylformamide (DMF) at 308 K are measured using a variable temperature calorimeter equipped with an isothermal shell. Standard enthalpies are determined and standard heat capacities of dissolution in the temperature range of 298–318 K are calculated using data obtained in [1, 2]. The state of hydrocarbon molecules in a binary mixture is studied in terms of the enhanced coordination model (ECM). Benzene is shown to be preferentially solvated by DMF over the range of physiological temperatures. The solvation shell of decane is found to be strongly enriched with 1-octanol. It is obvious that although both hydrocarbons are nonpolar, the presence of the aromatic π-system in benzene leads to drastic differences in their solvation in a lipid–protein medium.



Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution
Resumo
Heat effects of the dissolution of crystalline γ-aminobutyric acid in water and potassium hydroxide solutions are determined by direct colorimetry at 298.15 K. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution are calculated.



Radiospectroscopic method for determining contents of deuterium and tritium in aqueous solutions
Resumo
Radio-wave emission spectra in the microwave region are registered for the first time for ordinary water (H2O), heavy water (D2O), and D2O with a low content of T2O. The obtained spectra are analyzed according to a special program using a hardware–software complex. Measurement results show that the proposed method allows us not only to determine differences between substances in terms of composition and concentration, but to determine the presence of heavy and superheavy hydrogen isotopes in ordinary water as well.



Isobaric vapor liquid equilibria data for the binary system (glycidyl butyrate + acetone, glycidyl butyrate + carbon tetrachloride, glycidyl butyrate + chloroform) at atmospheric pressure 101 kPa
Resumo
Isobaric vapor liquid equilibria (VLE) for the binary mixtures of glycidyl butyrate(1) + acetone(2), glycidyl butyrate(1) + carbon tetrachloride(2) and glycidyl butyrate(1) + chloroform(2) at 101 kPa were studied. The experimental data were satisfactorily correlated with the models of Wilson, NRTL and UNIQUAC activity coefficients. The activity coefficients for the equilibrium data were obtained by the nonlinear least square method. The average relative deviations between experimental temperatures and calculated temperatures by the Wilson, NRTL and UNIQUAC models were 0.16, 0.16, 0.23% for glycidyl butyrate(1) + chloroform( 2), 0.38, 0.12, 0.27% for glycidylbutyrate(1) + carbon tetrachloride(2), and 0.67, 0.13, 0.54% for glycidyl butyrate(1) + acetone(2). Azeotrope behavior was not found for these systems. The thermodynamic consistency of the correlations was checked by the Herrington’s area test.



Thermodynamics of DL-α-aminobutyric acid induced solvation mechanism in aqueous KCl solutions at 288.15–308.15 K
Resumo
The solubilities of DL-α-aminobutyric acid in KCl solutions of different concentrations are measured at 288.15–308.15 K. Gibbs energies and entropies have been determined for transfer of α-aminobutyric acid form water to aqueous KCl solution at 298.15 K. The cavity, dipole-dipole and other interactions affecting the solubility, as well as stability of the amino acid in solution are also evaluated. Gibbs energy and entropy of transfer due to interactions are computed to create the model of the complex solute-solvent and solventsolvent interactions. Molar volume, densities, dipole moment of solvent and diameter of co-solvent in aqueous potassium chloride are also evaluated.



Prediction of solvation enthalpy of gaseous organic compounds in propanol
Resumo
The purpose of this paper is to present a novel way for developing quantitative structure-property relationship (QSPR) models to predict the gas-to-propanol solvation enthalpy (ΔHsolv) of 95 organic compounds. Different kinds of descriptors were calculated for each compound using the Dragon software package. The variable selection technique of replacement method (RM) was employed to select the optimal subset of solute descriptors. Our investigation reveals that the dependence of physical chemistry properties of solution on solvation enthalpy is nonlinear and that the RM method is unable to model the solvation enthalpy accurately. The results established that the calculated ΔHsolv values by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by RM model.



Structure of Matter and Quantum Chemistry
Formation of charged H3O+ and OH– fragments at consistent shifts of protons in water clusters
Resumo
Probable paths of consistent shifts of bridge protons within the hexamolecular rings of dodecamer water cluster at different arrangement of neighboring molecules are determined. As with individual rings, consistent shifts of protons in molecular cages are found to be promoted by contraction/extension of the oxygen skeleton. Transition states characterized by the formation of different numbers of such charged fragments as H3Oδ+, H5O2δ+, and OH–, are identified. Conditions of the relatively long-term (about picoseconds) existence of the fragments in cluster systems are determined.



Structure and energy of formation of β- and γ-cyclodextrin complexes with amino acid enantiomers
Resumo
The interaction between cyclodextrins (CyD), β-CyD, and γ-CyD, and the L- and D-optical isomers of several amino acids (Ala, Leu, His, Phe) are calculated using DFT. It is found that the L-forms of the investigated amino acids bond more strongly to CyD, due to the different numbers of hydrogen bonds that form. The structures of the resulting complexes are analyzed.



Structure of a composite material based on oxyfluoride glass and low-melting fluoroplast
Resumo
Aspects of the fabrication of composites obtained via the extrusion formation of mixtures composed of a perfluorocarbon polymer (F2MB) and a thermoplastic inorganic glass of the composition 3B2O3–97(40SnF2–30SnO–30P2O5) are investigated by analyzing the results from studies of their morphology, molecular structure, and phase composition.



Algorithm and criterion of quality for assessing the packing of polymer microspheres
Resumo
An algorithm for assessing the quality of the packing of two-dimensional ordered structures, prepared using polymer microspheres 20 μm in diameter on a water surface, is proposed. An analysis is performed on the basis of optical microscopy images. The area of the largest ordered microsphere domain in an image is used as the quality criterion. The algorithm simplifies analysis of the ordered structures.



Method for calculating the sizes of nucleation centers upon homogeneous crystallization from a supercooled liquid
Resumo
An alternative approach to calculating critical sizes lk of nucleation centers and work Ak of their formation upon crystallization from a supercooled melt by analyzing the variation in the Gibbs energy during the phase transformation is considered. Unlike the classical variant, it is proposed that the transformation entropy be associated not with melting temperature TL but with temperature T < TL at which the nucleation of crystals occurs. New equations for lk and Ak are derived. Based on the results from calculating these quantities for a series of compounds, it is shown that this approach is unbiased and it is possible to eliminate known conflicts in analyzing these parameters in the classical interpretation.



Method for calculating the parameters of formation of hydrates from multicomponent gases
Resumo
A model of hydrate formation in multicomponent gas–liquid water or ice systems including the exo- and endothermic processes has been suggested. Based on this model, a method for calculating the molecular and energy parameters such as the hydration number, amount of moles of hydrate, amount of gas and water in it, its density and molar mass, and the energy and rate of hydrate formation was developed. A comparison of the calculated and experimental values of the parameters revealed that the difference between them varied from 0 to 5.46%.



Singlet–triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)
Resumo
Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (ΔG(t–s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as–F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as–F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N–M–N angle, and the Δ(LUMO–HOMO) of XC2HN2M.



Density functional theory of tautomerism and water-assisted proton transfer of glycoluril
Resumo
Density functional theory and MP2 methods have been employed to study of proton transfer reaction in annular tautomerization of tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione (glycoluril). Ten different tautomers are possible for the tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione. For all molecules, the Gibbs free energy at 0 and 298 K was estimated. In addition variation of dipole moments and charges on atoms are studied in the gas phase and solution, the specific solvent effects with addition of one molecule of water near the electrophilic centers of tautomer and the NBO charges of atoms were investigated. NBO analysis shows that there is a strong interaction between nitrogen lone pairs and double bonds.



Physical Chemistry of Nanoclusters and Nanomaterials
Nanoporosity of Si (100) bars
Resumo
Si(100) samples cut from a typical bar (100 mm in diameter) prepared using industrial technology are studied. Measurements of the electron work function (EWF) show that the size effects in these samples (a reduction in thickness along with a sample’s area and the EWF) detected earlier were due to nanostructure porosity that was buried by the technological treatment of a bar’s surface. This hidden nanoporosity is assumed to be a manifestation of the secondary crystal structure.



The effect of hydroxyl group on the electronic structure of carbon nanotubes with different diameters
Resumo
A single hydroxyl group is functionalized on both sides of one ring of several carbon nanotubes (CNT) as CNT–OH. The electronic structure and chemical bonding parameters are studied with the help of quantum theory of atoms in molecules (QTAIM). Anionic states of the CNT–O as deprotonated hydroxyl are studied in order to get insight into the nature of CNT–OH species, considering frozen and relaxed geometries of CNT–O compounds. The results show a significant difference between inside or outside substituted hydroxyl groups; and also complicated behavior of the CNT’s diameter, and it can be concluded that hydroxyl group can be used to tune the CNT’s properties, effectively, in interesting application of these nanostructures.



Physical Chemistry of Surface Phenomena
Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores
Resumo
A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.



Physical Chemistry of Separation Processes: Chromatography
Elution power of a solvent as a criterion of relative lipid polarity
Resumo
New parameters are proposed that allow reliable calculation of fixed hydrophilicity values for different classes of lipids over the widest possible range, based on the elution power of solvents and using two compounds at the boundaries of the range as standards. The values of relative hydrophilicity are calculated from the values of relative chromatographic mobility of these types of compounds. It is established that the levels of hydrophilicity of different classes of lipids relative to the selected hexadecane–glycerol pair do not depend on the composition of the different mobile phases used in either planar or column types of liquid chromatography for the separation of complex lipid mixtures.



Colloid Chemistry and Electrochemistry
Redox sorption in metal–ion-exchanger nanocomposites upon electrochemical polarization
Resumo
A conjugated macrokinetic problem is solved for two moving boundaries of chemical reactions during redox sorption in metal–ion-exchange nanocomposites under conditions of current flow. Numerical solutions to the multipoint boundary value problem indicate that the impact of the current includes a slowing of front migration associated with distinct stages of the chemical reaction between metal nanoparticles and oxygen due to electrochemical reduction, a reduced surface concentration of the active sorbate (oxygen), and an increased degree of redox sorption. An increase in the contribution from the electrochemical component and a transition to external diffusion control are observed as the current density grows.



Ozone production and losses in N2/O2 mixtures in an ozone generator
Resumo
Nonunique ozone concentrations at the output of an ozone generator under identical external conditions of barrier discharge activation of N2/O2 mixtures but with different prehistories of operating practice and employed gas mixtures are investigated theoretically. An analytical approach is developed to determine the ozone yield with regard for its heterogeneous loss. Plasma-chemical and electron kinetics in the N2/O2-mixtures are calculated numerically. The results of numerical calculations are compared to experimental data obtained by the authors. It is noted that the heterogeneous loss of ozone is the probable reason for the observed variety of behavior of О3 concentrations, depending on prehistory of ozone generator operation, along with the N2 and O2 gas flow rates and the specific active power.



Mechanism of the anodic dissolution of gold in solutions of 6-alkyl-1,5-diazabicyclo[3.1.0]hexanes
Resumo
The electrochemical corrosion of gold in solutions of 6,6-dimethyl-1,5-diazabicyclo[3.1.0]hexane (I) and 6-methyl-1,5-diazabicyclo[3.1.0]hexane (II) on a gold electrode is studied via cyclic voltammetry. It is shown that the galvanostatic electrolysis of weakly basic aqueous solutions of I and II on gold anodes results in the corrosion of Au electrodes, probably with the formation of organic complexes of gold that are reduced to form a gold mirror on the inner surface of an electrochemical cell during electrolysis. A mechanism is proposed for the investigated processes.



Short Communications
Transformation of organic and inorganic compounds in trifluoroacetic acid
Resumo
It is established that the effectiveness of fluorine-containing acids in the transformation of organic and inorganic substrates is due to the ability of the acid to perform several functions: to accumulate relatively high concentrations of molecular oxygen, to activate it, and to serve as a hydrogen-containing medium.


