


Vol 87, No 2 (2018)
- Year: 2018
- Articles: 15
- URL: https://bakhtiniada.ru/0026-2617/issue/view/9931
Reviews
Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution
Abstract
The microorganisms forming symbioses with insects play an important role in nutrition, development and evolution of their hosts. They make it possible for their hosts to use poorly digestible nutrients, to resist the biotic and abiotic stresses, and to regulate the metamorphosis. The microsymbionts of insects may be facultative (genetically specialized for symbiosis but retaining the capacity for autonomous existence; they are usually located extracellularly, in the gut, hemolymph, or salivary glands of the host) or obligatory (incapable of autonomous existence due to the loss of large parts of their genomes; they are usually located inside specialized host cells). The intracellular symbionts (endocytobionts) are capable of vertical transmission during the host reproduction, which determines the loss of many housekeeping genes, including the genes for replication, transcription and translation. In some obligatory symbionts, amplification of genes performing the functions useful for the hosts, such as the synthesis of essential amino acids, was found. These symbionts exhibit increased rates of accumulation of mutations, including non-synonymous nucleotide substitutions, reflecting suppression of the purifying selection and activation of genetic drift stimulating the genome reduction. Transfer of some genes from endocytobionts to the nuclear chromosomes of insects enables them to implement the novel metabolic functions, including assimilation of rare nutrients. The obligatory intracellular insect symbionts may be used as models to reconstruct the early stages of evolution of cellular organelles, which involve reduction of essential genes and the loss of genetic individuality of the symbionts, i.e., the ability for self-maintenance and expression of their residual genomes. Genetic analysis of insect microsymbionts extends the opportunities for their practical application associated with biological control of harmful insects (herbivorous, bloodsucking) and stimulation of the beneficial ones (honey collectors, pollinators, antagonists of pests).



Experimental Articles
Direct Fe(III) Reduction from Synthetic Ferrihydrite by Haloalkaliphilic Lithotrophic Sulfidogens
Abstract
Ability to reduce insoluble Fe(III) compounds has not been shown for alkaliphilic lithotrophic sulfate and sulfur reducers. Detection of this metabolic process in sulfidogenic prokaryotes could significantly expand the present knowledge on physicochemical range of their growth and physiological activity, which is now limited by low negative ambient redox potential. Capacity for direct reduction of Fe(III) from chemically synthesized ferrihydrite was tested for eight species of hydrogenotrophic haloalkaliphilic sulfidogens grown with formate or H2 as electron donors in the absence of sulfur compounds in the medium. Out of eight tested species, six reduced iron with formate and five, with hydrogen as the electron donor. Iron reduction correlated with stimulation of growth on formate or hydrogen only in two sulfidogenic species. Analysis of available genomes of five tested species revealed that only Dethiobacter alkaliphilus and Desulfuribacillus alkaliarsenatis possess the gene sets of multiheme cytochromes c required for typical dissimilatory iron reduction. The presence of these genes in two strains with high iron-reducing activity indicates the capacity of some haloalkaliphilic sulfidogenic bacteria for carrying out direct dissimilatory reduction of insoluble Fe(III) forms in the absence of sulfur-containing electron acceptors, i.e., without using sulfide as a soluble mediator of iron reduction. In other studied microorganisms, the ability to reduce iron is probably caused by nonspecific metabolic activity and is not directly linked to energy generation for growth, although the rates of Fe(III) reduction determined in our experiments make it possible to suggest significant role of sulfidogenic microorganisms (normally reducing sulfur and sulfate) in the iron cycle in haloalkaline ecosystems upon decreased content of sulfur compounds.



Carbohydrate Spectrum of Extremophilic Yeasts Yarrowia lipolytica under pH Stress
Abstract
Alterations in the concentrations of cell cytosol carbohydrates of polyextremophilic yeasts Yarrowia lipolytica under stresses of diverse nature were observed. Under pH stress, mannitol was the main storage carbohydrate (up to 89% of the total cytosol carbohydrates), while arabitol, glucose, and inositol were present in insignificant amounts (3 to 6%). Experiments with inhibition of de novo mannitol synthesis by bis(p-nitrophenyl) disulfide revealed that the cytoprotective effect of mannitol was most noticeable in the cells grown under acidic conditions (pH 4.0), while the role of catalase and superoxide dismutase, the enzymes of the first line of antioxidant protection, increased under alkaline conditions (pH 9.0). The constitutively high mannitol content in Y. lipolytica cells was hypothesized to be a part of the core mechanism of stress resistance in this yeast species.



Role of Partially Saturated Canthaxanthin and Ergosterol in the Survival of Aspergillus carbonarius Mutant at Extreme Acidic Condition
Abstract
Unlike the wild type, the mutant Aspergillus carbonarius synthesized a yellow pigment, partially saturated canthaxanthin (PSC) when the growth medium acidified to low pH. Since the pigment found pharmaceutical applications, the possible mechanism involved in its ability to grow at extreme acidic conditions is described. To understand the mutation in the pathway, specific inhibitors affecting carotenoid biosynthesis were used in the medium and PSC synthesis and cell integrity were studied. Results suggested that the possible occurrence of mutation in the isoprenoid pathway for higher production of carotenoid as well as ergosterol caused the mutant to grow in extremely acidic conditions. The results also suggested that the flow of carbon for sterol biosynthesis and that of carotenoids are dependent. The deposition of carotenoids and ergosterol in the cell membrane causing the cells to maintain pH homeostasis under the acidic growth conditions is of significant importance. In A. carbonarius, understanding the cause of stress induced PSC accumulation is essential for efficient expression and production of the pharmaceutically significant carotenoid and this will further facilitate research into the role of carotenoids in stress tolerance of other filamentous fungi.



Effect of Light with Different Spectral Composition on Cell Growth and Pigment Composition of the Membranes of Purple Sulfur Bacteria Allochromatium minutissimum and Allochromatium vinosum
Abstract
The effect of light with different spectral composition: white, red and blue-green (the first one is absorbed by all the pigments of the cell, and the second and the third ones are absorbed by bacteriochlorophyll and carotenoids, respectively) on culture growth, carotenoid synthesis, and assembly of the light-harvesting complexes was studied for the purple sulfur bacteria Allochromatium (Alc.) minutissimum MSU and Alc. vinosum ATCC 17899. The working hypothesis on the growth of bacteria under blue-green illumination (absorbed by carotenoids) resulting in the inhibition of cell growth was tested. When equalizing the light by luxes, the intensity of illumination for each luminous flux was 1800 lx (white and red light, 4 W/m2; bluegreen light, 0.4 W/m2). The growth of the cells was recorded in white and red light, while in blue-green light an insignificant increase was observed only for Alc. vinosum at the end of the experiment (7–9 days). Regardless of the spectral composition of the light the B800-850 type LH2 complex was always assembled in Alc. minutissimum membranes, and two short-wave LH2 complexes of В800-820 and В800-840 type were assembled in the membranes of Alc. vinosum. Upon smoothing and increasing the luminous flux up to 6 W/m2 for every illumination mode, both cultures grew with approximately equal rates in blue-green light. In the membranes of Alc. minutissimum and Alc. vinosum the same types of LH2 complexes were assembled as in the case of 1800 lx illumination. It was found that blue-green light did not inhibit cell growth. At illumination of the cells collected at the end of the experiment with blue-green light for 6 h, no photooxidation of BChl850 was registered. However, in the membranes from the cells oxygen-saturated at isolation, ~50% of BChl850 was oxidized after 30 minutes of illumination. In the course of cell growth, oxygen is probably completely consumed and anaerobic conditions develop inside the cell. Under these conditions, formation of reactive oxygen species, BChl photooxidation and inhibition of the cell growth become impossible.



Comparative Analysis of the Biological Activity and Chromatographic Profiles of the Extracts of Beauveria bassiana and B. pseudobassiana Cultures Grown on Different Nutrient Substrates
Abstract
Soil, enodphytic, and insect-pathogenic micromycetes of the genus Beauveria are widespread in nature and are important producers on mycoinsecticides, enzymes, and pharmacologically usable and toxic compounds. The goal of the work was to determine chemodiagnostic approaches to differentiation of Beauveria cryptic species using the strains B. bassiana BBL and B. pseudobassiana BCu22 by comparing their toxicological properties (insecticidal, antimicrobial, phytotoxic, cytotoxic, and esterase-inhibition activity) and metabolite profiles (TLC and HPLC/DAD patterns) of the extracts from the cultures of these fungi growing on different loose substrates, on solid and liquid media. It was shown that when the strains were cultured in liquid media (SDAY and Adámek medium) and on solid substrates (millet and Czapek agar medium), they could be differentiated by the extract yield and chromatographic profiles, as well as by their insecticidal, antifungal, and cytotoxic activity. Thus, antifungal properties were more pronounced in B. pseudobassiana BCu22 grown in liquid Adámek and SDAY media, while cytotoxic properties were more notable in B. bassiana BBL grown in Adámek medium and on millet. Insecticidal properties of the extracts from these cultures varied depending on the substrate composition. Since the extracts of the studied fungi exhibited a broad spectrum of biological activity, the toxic properties of Beauveria spp. should be considered in the course of assessment of safety of these fungi as bioinsecticides.



Hybrid Selection of Saccharomyces cerevisiae Yeasts for Thermotolerance and Fermentation Activity
Abstract
Molecular genetic screening of Saccharomyces yeasts, isolated from natural sources in the regions of the world with a hot climate (Africa, South America, Southeast and Central Asia) was used for the search of thermotolerant S. cerevisiae strains. Based on physiological tests, four strains were selected that could grow at high temperatures (42 and 43°C) and had good fermentation activity: 7962-4B, 3529-7B, 52922-4-1-1A- 1C, and 87-2421.1-2A. Hybrids of monosporic culture of distiller’s race XII (XII7-2) with the thermotolerant strains were obtained. Unlike the strain XII7-2, which is unable to grow at above 39°C, all hybrids showed good growth at 42°C. Two of the six hybrids analyzed, H2-1 (87-2421.1-2A × XII7-2) and H3-2 (7962-4B × XII7-2), showed higher fermentation activity than the parental strains. According to the results obtained, inter-strain hybridization is an efficient method of obtaining S. cerevisiae strains, which combine thermotolerance with high efficiency of alcoholic fermentation.



Phenol Oxidase Activity of Azospirillum brasilense Sp245 Mutants with Modified Motility and Azospirillum brasilense Sp7 Phase Variants with Different Plasmid Composition
Abstract
Herein, we reveal the alteration in phenol oxidase enzymes complex production from Azospirillum brasilense Sp245 omegon mutants with polar and lateral flagella dysfunction and from A. brasilense Sp7 phase variants with different plasmid composition. The enzymatic activities for various laccases, tyrosinases, Mnperoxidases, and lignin peroxidases as well as the isomorphic composition of intracellular laccases and tyrosinases were estimated for the studied variants and the parent strains. It was noted that various genetic events correlating with phenotypic heterogeneity in A. brasilense populations affect their phenol oxidase activity level.



Bio-Synthesis of Gold Nanoparticles by Fusarium oxysporum and Assessment of Their Conjugation Possibility with Two Types of β-Lactam Antibiotics without Any Additional Linkers
Abstract
In the present study, biosynthesis of gold nanoparticles (GNPs) by Fusarium oxysporum was carried out and their conjugation possibility with two β-lactam antibiotics was evaluated. F. oxysporum was cultured and the fungal culture supernatant was subjected to the 1 mmol final concentration of chloroauric acid solution. The produced GNPs were analyzed using visible spectrophotometer, X-ray diffraction analysis (XRD) and transmission electron microscope (TEM). After the purification of GNPs, they were subjected to penicillin G and ceftriaxone without any additional linkers. Finally, the mixture was analyzed using visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and TEM and subjected to antibacterial activity test using the well diffusion method. Results confirmed the presence of GNPs in the F. oxysporum culture supernatant after the addition of chloroauric acid. TEM results showed that GNPs were spherical and amorphous with sizes around 10–25 nm and XRD confirmed the presence of GNPs in the fungal culture supernatant. After the incubation of GNPs with the antibiotics, FTIR results demonstrated the successful linking of GNPs with the corresponded antibiotics and TEM images showed that GNPs sizes were bigger than the pure ones (around 50–100 nm). Finally the antibacterial activity test indicated that absolutely, the antibacterial properties of the GNPs-β-lactam antibiotics was lowered or not changed in contrast to the pure antibiotics. The present study showed that GNPs had high tendency of conjugation with antibiotics but unlike the previous researches, linking of the antibiotics to GNPs always cannot improve their antibacterial activity based on the antibiotics that were used. The high conjugation affinity of GNPs made them a good candidate as detoxification agent in diverse areas of medicine or environmental sciences.



Microbial Community Composition and Rates of the Methane Cycle Microbial Processes in the Upper Sediments of the Yamal Sector of the Southwestern Kara Sea
Abstract
Geochemical, biogeochemical, and molecular genetic investigation of the upper (0–5 cm) bottom sediments of the Yamal sector of the Kara Sea was carried out. The Yamal sector is well-protected from the massive inflow of river water. The sediments were oxidized at the surface and weakly reduced in the 3−5-cm layer. Corg content varied from 0.1 to 1.3%, while the level of dissolved СН4 was 1.9 to 20.3 μmol L–1. The isotopic composition of organic matter (OM) carbon, δ13Corg, varied from–27.5 to–22.2‰ (–25.4‰ on average). The share of terrigenous OM was 13.3 to 72.2% (48.9% on average). The rate of methane production, methane oxidation, and sulfate reduction varied from 0.8 to 9.0 (2.7 on average) nmol СН4 dm–3 day–1, from 9.9 to 103 (31.6 on average) nmol СН4 dm–3 day–1, and from 0.49 to 2.2 (1.1 on average) μmol S dm–3 day–1, respectively. High-throughput sequencing of the amplicons of the 16S rRNA genes was used to reveal the physiological groups of microorganisms responsible for the processes of methane production and oxidation, sulfate reduction, and oxidation of reduced sulfur compounds. Members of the phylum Woesearchaeota were predominant among archaea. Methanogenic archaea belonged to the families Methanobacteriaceae, Methanococcaceae, and Methanosarcinaceae (Euryarchaeota). Methanotrophs of the family Methylococcaceae were revealed among the Gammaproteobacteria, with their share in the sediments ~1%. In the class Deltaproteobacteria (15.4%), three orders of sulfate reducers were predominant: Desulfobacterales, Desulfovibrionales, and Desulfuromonadales. Oxidation of reduced sulfur compounds was carried out by chemolithoautotrophic bacteria of the genera Sulfurovum, Sulfurimonas, and Arcobacter of the class Epsilonproteobacteria (1.1% of the total microbial number).



Cyanobacterial Diversity in the Soils of Russian Dry Steppes and Semideserts
Abstract
Taxonomic diversity of cyanobacterial communities in solonetz, meadow, chestnut, and brown semidesert soils of the zone of dry steppes and semideserts in three regions of Russia (Kalmyk Republic and Volgograd and Astrakhan oblasts) was studied. Cyanobacterial communities of the solonetz and chestnut soils were shown to be similar in structure, with predominance of the orders Nostocales and Synechococcales, while the similarity between meadow and brown semidesert soils was the lowest. Morphological and molecular genetic analysis revealed members of the genera Desmonostoc, Hassallia, Komvophoron, Nodosilinea, Pseudanabaena, and Rhabdoderma, which have not been previously detected in the soils of these types.



Diversity of Oil-Degrading Microorganisms in the Gulf of Finland (Baltic Sea) in Spring and in Summer
Abstract
Diversity of the oil-degrading microbial strains isolated from the water and sediments of the Gulf of Finland (Baltic Sea) in winter and in summer was studied. Substrate specificity of the isolates for aliphatic and aromatic hydrocarbons was studied. The isolates belonged to 32 genera of the types Proteobacteria (alpha-, beta-, and gammaproteobacteria), Actinobacteria,Firmicutes, and Bacteroidetes. Seasonal variations of the oil-degrading microbial communities was revealed. The presence of the known genes responsible for the degradation of oil aliphatic and aromatic hydrocarbons was determined. The alkB sequence of the alkane hydroxylase gene was found in ~16% of the studied strains. The sequence of the phnAc phenanthrene 3,4- dioxygenase was found in Sphingobacterium sp. and Arthrobacter sp. isolates retrieved in winter and summer. In five Pseudomonas sp. strains from winter samples, the classical operons of naphthalene degradation (nah) were localized in catabolic plasmids, of which three belonged to IncР-9, one, to IncР-7, and two to an unidentified incompatibility group. Burkholderia and Delftia strains contained the operons for naphthalene degradation via salicylate and gentisate (nag). The presence of nag genes has not been previously reported for Delftia spp. strains. The sequences of the nagG salicylate 5-hydroxylase gene were also found in Achromobacter, Sphingobacterium, and Stenotrophomonas strains.



Bacterial Diversity and Functional Activity of Microbial Communities in Hot Springs of the Baikal Rift Zone
Abstract
In this study the bacterial diversity of thermophilic microbial mats (40 to 65°C) in three alkaline hot springs of the Baikal Rift Zone (BRZ) was determined through pyrosequencing of 16S rRNA gene libraries. Significant diversity of bacterial species was found in the biomats of the hot springs with total number of detected phylotypes of 607. The highest share of the microbial community was represented by the phyla Chloroflexi (Seya Spring, 76.4%), Deinococcus-Thermus (Alla Spring, 45.1%), Nitrospira (Alla Spring, 36.1%), Cyanobacteria (Tsenkher Spring, 33.1%), and Proteobacteria (Tsenkher Spring, 22.6%), but their ratio varied significantly in different springs. A comparison of the biodiversity and composition of microbial communities between hot springs showed a decrease in biodiversity with increasing temperature. A large number of sequences showed a low degree of similarity with cultivated representatives in public databases. Microbial communities showed intensive rates of production and destruction of organic compounds, as revealed by the quantitative assessment of their functional activity.



Isolation and Characterization of Bacterial Species from Ain Mud Volcano, Iran
Abstract
Along the coastal belt of Makran, on the southeastern margin of Iran, there are several active and inactive mud volcanoes with different morphologies. Ain—an actively bubbling eye-shaped mud pool—is one of these unique geological phenomena. Present study indicates the first overview of the bacterial diversity of this mud volcano obtained by culture techniques. For this purpose, two samples were collected at two different depths of the mud pool and were cultivated on two different nutrient culture media. A total of 13 isolates were randomly chosen for further phenotypic and genotypic characterization. Growth of the isolates occurred at 25–42°C, pH 8–10 and 0–10% NaCl, indicating that most of them were haloalkaliphiles. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the bacterial isolates belonged to three major taxa: Gammaproteobacteria (genera: Marinobacter, Nitrincola, Stentrophomonas), Actinobactera (genera: Kocuria, Brevibacterium, Dietzia) and Firmicutes (genus Planomicrobium). Gammaproteobacteria were the most abundant, following Actinobacteria and Firmicutes. Most of the strains isolated in the present study had the ability to produce extracellular hydrolytic enzymes such as lipases, amylases, proteases and DNases, making them important biotechnologically.



Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils
Abstract
Four potential polyester-degrading bacterial strains were isolated from compost soils in Thailand. These bacteria exhibited strong degradation activity for polyester biodegradable plastics, such as polylactic acid (PLA), polycaprolactone (PCL), poly-(butylene succinate) (PBS) and polybutylene succinate-co-adipate (PBSA) as substrates. The strains, classified according to phenotypic characteristics and 16S rDNA sequence, belonging to the genera Actinomadura, Streptomyces and Laceyella, demonstrated the best polyester- degrading activities. All strains utilized polyesters as a carbon source, and yeast extract with ammonium sulphate was utilized as a nitrogen source for enzyme production. Optimization for polyester-degrading enzyme production by Actinomadura sp. S14, Actinomadura sp. TF1, Streptomyces sp. APL3 and Laceyella sp. TP4 revealed the highest polyester-degrading activity in culture broth when 1% (w/v) PCL (18 U/mL), 0.5% (w/v) PLA (22.3 U/mL), 1% (w/v) PBS (19.4 U/mL) and 0.5% (w/v) PBSA (6.3 U/mL) were used as carbon sources, respectively. All strains exhibited the highest depolymerase activities between pH 6.0–8.0 and temperature 40–60°C. Partial nucleotides of the polyester depolymerase gene from strain S14, TF1 and APL3 were studied. We determined the amino acids making up the depolymerase enzymes had a highly conserved pentapeptide catalytic triad (Gly-His-Ser-Met-Gly), which has been shown to be part of the esterase-lipase superfamily (serine hydrolase).


