Water soluble peroral pharmaceutical form of phosphatidylcholine: experimental and clinical data in combined hyperlipidemia
- Authors: Markin S.S.1, Kuharchuk V.V.2, Lisitsa A.V.1, Ponomarenko E.A.1, Romashova Y.A.1, Pleshakova T.O.1, Ipatova O.M.1, Tikhonova E.G.1, Guseva M.K.1, Kutsenko V.A.3, Ivanov S.V.1, Yarovaya E.B.4, Zubareva M.Y.2, Beregovykh V.V.1, Archakov A.I.1
-
Affiliations:
- V.N. Orekhovich Research Institute of Biomedical Chemistry
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov
- National Medical Research Center for Therapy and Preventive
- Lomonosov Moscow State University
- Issue: Vol 80, No 1 (2025)
- Pages: 42-48
- Section: PHARMACOLOGY: CURRENT ISSUES
- URL: https://bakhtiniada.ru/vramn/article/view/310190
- DOI: https://doi.org/10.15690/vramn18026
- ID: 310190
Cite item
Abstract
This article discusses the role of phospholipids as a key component of high-density lipoproteins (HDL) involved in the reverse transport of cholesterol from cells with its subsequent excretion from the body. The results of the phospholipidation research on the capacity of HDL cholesterol efflux from macrophages, as well as an assessment of the hypolipidemic and antiatherogenic effects of phospholipids on an atherosclerosis rabbit model at the functional and morphological levels are presented. In phase I clinical trial the safety of the oral administration of the innovative water-soluble pharmaceutical form of phosphatidylcholine in healthy volunteers was proven. In a double-blind, placebo-controlled phase II-III clinical trial in patients with combined hyperlipidemia its efficacy in achieving of the non-HDL cholesterol and triglycerides therapeutic target and safety with long-term oral administration was demonstrated.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey S. Markin
V.N. Orekhovich Research Institute of Biomedical Chemistry
Author for correspondence.
Email: phospholipovit@ibmc.msk.ru
ORCID iD: 0000-0002-0242-0282
SPIN-code: 7844-9524
MD, PhD, Professor
Russian Federation, MoscowValery V. Kuharchuk
National Medical Research Centre of Cardiology Named after Academician E.I. Chazov
Email: v_kukharch@mail.ru
ORCID iD: 0000-0002-7028-362X
SPIN-code: 6776-1083
MD, PhD, Professor
Russian Federation, MoscowAndrey V. Lisitsa
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: lisitsa058@gmail.com
ORCID iD: 0000-0003-1188-4270
SPIN-code: 3136-0825
PhD in Biology, Academician of the RAS
Russian Federation, MoscowElena A. Ponomarenko
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: 2463731@gmail.com
ORCID iD: 0000-0002-9672-7145
SPIN-code: 8427-5490
PhD in Biology
Russian Federation, MoscowYulia A. Romashova
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: yulromashova@gmail.com
ORCID iD: 0000-0001-9580-0251
PhD in Biology
Russian Federation, MoscowTatiana O. Pleshakova
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: topleshakova@yandex.ru
ORCID iD: 0000-0002-5435-5937
SPIN-code: 8340-2083
PhD of Chemical Sciences, PhD in Biology
Russian Federation, MoscowOlga M. Ipatova
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: dir@ibmc.msk.ru
ORCID iD: 0000-0001-6285-1669
PhD in Biology
Russian Federation, MoscowElena G. Tikhonova
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: elena.tikhonova_@mail.ru
ORCID iD: 0000-0001-8301-1028
PhD of Chemical Sciences
Russian Federation, MoscowMariia K. Guseva
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: gusevamk@gmail.com
ORCID iD: 0000-0002-5576-6164
PhD in Biology
Russian Federation, MoscowVladimir A. Kutsenko
National Medical Research Center for Therapy and Preventive
Email: vlakutsenko@ya.ru
ORCID iD: 0000-0001-9844-3122
SPIN-code: 8567-1789
PhD of Physical and Mathematical Sciences
Russian Federation, MoscowSergey V. Ivanov
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: ivanov-sv-tver@mail.ru
ORCID iD: 0000-0003-0438-9108
SPIN-code: 6222-8337
PhD in Biology
Russian Federation, MoscowElena B. Yarovaya
Lomonosov Moscow State University
Email: yarovaya@mech.math.msu.su
ORCID iD: 0000-0002-6615-4315
SPIN-code: 5591-8439
PhD of Physical and Mathematical Sciences, Professor
Russian Federation, MoscowMariia Yu. Zubareva
National Medical Research Centre of Cardiology Named after Academician E.I. Chazov
Email: mzubareva06@mail.ru
ORCID iD: 0000-0002-7050-9393
SPIN-code: 2196-3393
MD, PhD
Russian Federation, MoscowValery V. Beregovykh
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: ber2742@gmail.com
ORCID iD: 0000-0002-0210-4570
SPIN-code: 5940-7554
PhD of Technical Sciences, Professor, Academician of the RAS
Russian Federation, MoscowAlexander I. Archakov
V.N. Orekhovich Research Institute of Biomedical Chemistry
Email: archak@ibmc.msk.ru
ORCID iD: 0000-0002-2290-8090
SPIN-code: 9412-0222
PhD in Biology, Professor, Academician of the RAS
Russian Federation, MoscowReferences
- Choi HY, Hafiane A, Schwertani A, et al. High-density lipoproteins: biology, epidemiology, and clinical management. Can J Cardiol. 2017;33(3):325–333. doi: https://doi.org/10.1016/j.cjca.2016.09.012
- Besler С, Lüscher TF, Landmesser U. Molecular mechanisms of vascular effects of high-density lipoprotein: alterations in cardiovascular disease. EMBO Mol Med. 2012;4(4):251–268. doi: https://doi.org/10.1002/emmm.201200224
- Alwaili K, Bailey D, Awan Z, et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim Biophys Acta. 2012;821(3):405–415. doi: https://doi.org/10.1016/j.bbalip.2011.07.013
- Hafiane A, Genest J. HDL, Atherosclerosis, and Emerging Therapies. Cholesterol. 2013;2013:891403. doi: https://doi.org/10.1155/2013/891403
- Pownall HJ, Ehnholm C. Enhancing reverse cholesterol transport: the case for phosphatidylcholine therapy. Curr Opin Lipidol. 2005;16(3):265–268. doi: https://doi.org/10.1097/01.mol.0000169345.15450.4b
- Salazar J, Olivar LC, Bermúdez REV, et al. Dysfunctional high-density lipoprotein: an innovative target for proteomics and lipidomics. Cholesterol. 2015;2015:296417. doi: https://doi.org/10.1155/2015/296417
- Kostara CE, Papathanasiou A, Psychogios N, et al. NMR-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease. J Proteome Res. 2014;13(5):2585–2598. doi: https://doi.org/10.1021/pr500061n
- Morgantini C, Meriwether D, Baldi S, et al. HDL lipid composition is profoundly altered in patients with type 2 diabetes and atherosclerotic vascular disease. Nutr Metab Cardiovasc Dis. 2014;24(6):594–599. doi: https://doi.org/10.1016/j.numecd.2013.12.011
- Fournier N, Paul JL, Atger V, et al. HDL phospholipid content and composition as a major factor determining cholesterol efflux capacity from Fu5AH cells to human serum. Arterioscler Thromb Vasc Biol. 1997;17(11):2685–2691. doi: https://doi.org/10.1161/01.atv.17.11.2685
- Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289(35):24020–24029. doi: https://doi.org/10.1074/jbc.R114.583658
- Agarwala AP, Rodrigues A, Risman M. High-density lipoprotein (HDL) phospholipid content and cholesterol efflux capacity are reduced in patients with very high HDL cholesterol and coronary Disease. Arterioscler Thromb Vasc Biol. 2015;35(6):1515–1519. doi: https://doi.org/10.1161/ATVBAHA.115.305504
- Торховская Т.И., Кудинов В.А., Захарова Т.С., и др. Фосфатидилхолин липопротеинов высокой плотности плазмы крови как регулятор обратного транспорта холестерина // Биоорганическая химия. — 2018. — Т. 44. — № 6. — С. 608–619. [Torkhovskaya TI, Kudinov VA, Zakharova TS, et al. Membrane proteins and phospholipids as effectors of reverse cholesterol transport. Russian Journal of Bioorganic Chemistry. 2018;44(6):608–519. (In Russ.)] doi: https://doi.org/10.1134/S0132342318060118
- Торховская Т.И., Кудинов В.А., Захарова Т.С., и др. Дисфункциональные липопротеины высокой плотности: роль в атерогенезе и потенциальные мишени для фосфолипидной терапии // Кардиология. — 2018. — Т. 58. — № 3. — С. 73–83. [Torkhovskaya TI, Kudinov VA, Zakharova TS, et al. Dysfunctional High-Density Lipoproteins: Role in Atherogenesis and Potential Targets for Phospholipid Therapy. Kardiologiia. 2018;58(3):73–83. (In Russ.)] doi: https://doi.org/10.18087/cardio.2018.3.10101
- Suematsu Y, Kawachi E, Idemoto Y, et al. Anti-atherosclerotic effects of an improved apolipoprotein A-I mimetic peptide. Int J Cardiol. 2019;297:111–117. doi: https://doi.org/ 10.1016/j.ijcard.2019.08.043
- Pownall HJ. Detergent-mediated phospholipidation of plasma lipoproteins increases HDL cholesterophilicity and cholesterol efflux via SR-BI. Biochemistry. 2006;45(38):11514–11522. doi: https://doi.org/10.1021/bi0608717
- Лохов П.Г., Маслов Д.Л., Балашова Е.Е., и др. Масс-спектрометрический анализ липидома плазмы крови, как способ диагностики заболеваний, оценки эффективности и оптимизации лекарственной терапии // Биомедицинская химия. — 2015. — Т. 61. — № 1. — С. 7–18. doi: https://doi.org/10.18097/PBMC20156101007 [Lokhov PG, Maslov DL, Balashova EE, et al. Mass spectrometry analysis of blood plasma lipidome as the method of disease diagnostics, evalution of effectiveness and optimization of drug therapy. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2015;9:95–105. doi: https://doi.org/10.1134/S1990750815020109]
- Арчаков А.И., Гусева М.К., Медведева Н.В., и др. Фосфолипидная лекарственная композиция с наноразмером частиц для лечения нарушений липидного обмена и коматозных состояний и способ ее получения / Патент РФ № 2448715 от 30.12.2010. [Archakov AI, Guseva MК, Medvedeva NV, et al. Phospholipid therapeutic composition with nano-sized particles for lipid storage disease and comatose states and method for preparing it. Patent RU No. 2448715, 30.12.2010. (In Russ.)]
- Hajj Hassan H, Blain S, Boucher B, et al. Structural modification of plasma HDL by phospholipids promotes efficient ABCA1-mediated cholesterol release. J Lipid Res. 2005;46(7):1457–1465. doi: https://doi.org/10.1194/jlr.M400477-JLR200
- Kudinov VA, Torkhovskaya TI, Zakharova TS, et al. High-density lipoprotein remodeling by phospholipid nanoparticles improves cholesterol efflux capacity and protects from atherosclerosis. Biomed Pharmacother. 2021;41:111900. doi: https://doi.org/10.1016/j.biopha.2021.111900
- Tarling EJ, Edwards PA. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A. 2011;108(49):19719–19724. doi: https://doi.org/10.1073/pnas.1113021108
- Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPARgamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001;7(1):53–58. doi: https://doi.org/10.1038/83348
- Triolo M, Annema W, Boer JF, et al. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur J Clin Invest. 2013;44(3):240–248. doi: https://doi.org/10.1111/eci.12226
- Archakov A, Kukharchuk V, Lisitsa A, et al. Ultra-small phospholipid nanoparticles in the treatment of combined hyperlipidemia: a randomized placebo-controlled clinical trial. Res Pharm Sci. 2024;19(6):656–668. doi: https://doi.org/10.4103/RPS.RPS_274_23
Supplementary files
