Association of polymorphic markers in EDNRB and NLRP3 genes with the risk of developing various stages of primary open-angle glaucoma in residents of the Perm region

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Background. Primary open-angle glaucoma (POAG) occupies a leading place among the causes of vision loss and blindness. According to the literature, the immunopathogenesis of POAG is associated with inflammatory processes, the development of which involves factors of innate immunity. In isolated articles, the development of this pathology is associated with NLRP3 inflammasome and oxygen explosion. However, there are practically no studies that reveal the issues of the mutually conditioning effect of the inflammasome and the factors involved in the process of oxidative stress and endothelial dysfunction. Aims — to study the association of polymorphic markers rs5351 of the EDNRB gene, rs7525979 of the NLRP3 gene at various stages of primary open-angle glaucoma. Methods. Peripheral blood of 141 patients with POAG and 97 patients with cataract was used. After DNA isolation, a polymerase chain reaction was performed in real time. The frequency of occurrence of alleles and genotypes in the study groups was calculated using the χ2 criterion, the Fisher exact criterion and the Mann–Whitney criterion.The results with p < 0.05 were considered statistically significant. To quantify the relationship between the occurrence of POAG in patients and the carrier of an unfavorable polymorphic marker, the odds ratio and 95% confidence interval were calculated. Results. The main group and the comparison group were identified. Among the patients of the main group, depending on the stage of POAG, 4 subgroups were identified. Relative to the comparison group, the T allele and the heterozygous genotype of the polymorphic marker rs7525979 NLRP3 were associated with the risk of POAG, aggravating the I and IV stages of the disease, while the homozygous CC genotype played a protective role, especially with respect to the I and IV stages of POAG. The C allele was associated with stage IV OAG and played a protective role for patients with stage II OAG. Allele A rs5351 EDNRB played a protective role for patients with POAG, homozygous genotype GG was associated with the risk of POAG, heterozygous genotype played a protective role. Homozygous genotype AA increased the risk of developing stage I POAG, homozygous genotype GG increased the risk of stage IV POAG. Conclusions. alleles and genotypes of the EDNRB and NLRP3 genes can be considered as factors affecting the probability of occurrence of POAG. In this paper, we studied 2 polymorphic markers in 2 genes of innate immunity factors and found that they are associated with the development of POAG, as well as some of them are associated with a certain stage of POAG. These data can be used for diagnostic purposes as prognostic markers and in the development of immunomodulatory therapy for the prevention of POAG development and the progressive course of this disease.

作者简介

Tatyana Gavrilova

Academician E.A. Vagner Perm State Medical University

Email: gavrilova.tv@mail.ru
ORCID iD: 0000-0003-2071-9322
SPIN 代码: 5947-8762

MD, PhD, Professor, Corresponding Member of the RAS

俄罗斯联邦, Perm

Aliya Kinkulkina

I.М. Mechnikov Research Institute for Vaccines and Sera; I.M. Sechenov First Moscow State Medical University (Sechenov University)

编辑信件的主要联系方式.
Email: princes111@yandex.ru
ORCID iD: 0000-0003-4473-0577
SPIN 代码: 6331-4685
Researcher ID: GXM-7568-2022
俄罗斯联邦, Moscow; Moscow

Asmik Avagyan

I.М. Mechnikov Research Institute for Vaccines and Sera

Email: avagyan.asmik@list.ru
俄罗斯联邦, Moscow

Alexander Poddubikov

I.М. Mechnikov Research Institute for Vaccines and Sera

Email: poddubicov@yandex.ru
ORCID iD: 0000-0001-8962-4765
SPIN 代码: 9658-1553

MD, PhD

俄罗斯联邦, Moscow

Margarita Chereshneva

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences

Email: mchereshneva@mail.ru
SPIN 代码: 9571-3646

MD, PhD, Professor

俄罗斯联邦, Ekaterinburg

Maxim Shatokhin

Russian Medical Academy of Continuous Professional Education

Email: sh.77@mail.ru
ORCID iD: 0000-0002-4568-0594
SPIN 代码: 7344-9309

MD, PhD, Professor

俄罗斯联邦, Moscow

Oksana Svitich

I.М. Mechnikov Research Institute for Vaccines and Sera; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN 代码: 8802-5569

MD, PhD, Professor, Corresponding Member of the RAS

俄罗斯联邦, Moscow; Moscow

参考

  1. Мовсисян А.Б., Куроедов А.В., Архаров М.А., и др. Эпидемиологический анализ заболеваемости и распространенности первичной открытоугольной глаукомы в Российской Федерации // РМЖ. Клиническая офтальмология. — 2022. — Т. 22. — № 1. — С. 3–10. [Movsisyan AB, Kuroedov AV, Arkharov MA, et al. Epidemiological analysis of the incidence and prevalence of primary open-angle glaucoma in the Russian Federation. Clinical Ophthalmology. 2022;22(1):3–10. (In Russ.)] doi: https://doi.org/10.32364/2311-7729-2022-22-1-3-10
  2. Репринцев А.В., Рыжаева В.Н. Сравнительный анализ распространенности глаукомы в ряде регионов России // Актуальные проблемы гуманитарных и естественных наук. — 2019. — Т. 6. — С. 189–192. [Reprintsev AV, Ryzhaeva VN. Comparative analysis of the prevalence of glaucoma in a number of regions of Russia. Actual Problems of Humanities and Natural Sciences. 2019;6:189–192. (In Russ.)]
  3. Дымочка М.А., Веригина Н.Б., Турченкова Д.А., и др. Первичная инвалидность взрослого населения Российской Федерации за период 2019–2021 гг. (информационно-аналитический материал) // Медико-социальные проблемы инвалидности. — 2022. — № 2. — С. 8–19. [Dymochka MA, Verigina NB, Turchenkova DA, et al. Primary disability of the adult population of the Russian Federation for the period 2019–2021 (information and analytical material). Medical and Social Problems of Disability. 2022;2:8–19. (In Russ.)]
  4. Диордийчук С.В., Куроедов А.В., Фомин Н.Е., и др. Свое-временная диагностика и влияние приверженности лечению на прогноз и прогрессирование глаукомной оптической нейропатии // РМЖ. Клиническая офтальмология. — 2021. — Т. 21. — № 1. — С. 34–39. [Diordiychuk SV, Kuroedov AV, Fomin NE, et al. Timely diagnosis and the effect of adherence to treatment on the prognosis and progression of glaucoma optic neuropathy. Breast cancer. Clinical Ophthalmology. 2021;21(1):34–39. (In Russ).] doi: https://doi.org/10.32364/2311-7729-2021-21-1-34-39
  5. Малишевская Т.Н., Косакян С.М., Егоров Д.Б. и др. Региональный регистр пациентов с глаукомой. Методологические аспекты построения, возможности использования в клинической практике // Российский офтальмологический журнал. — 2020. — Т. 13. — № 4. — С. 7–35. [Malishevskaya TN, Kosakian SM, Egorov DB, et al. А regional registry of patients with glaucoma. Methodological aspects of construction, possibilities of use in clinical practice. Russian Ophthalmological Journal. 2020;13(4):7–35. (In Russ.)] doi: https://doi.org/10.21516/2072-0076-2020-13-4-supplement-7-35
  6. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: https://doi.org/10.1016/j.ophtha.2014.05.013
  7. Загидуллина А.Ш. О фенотипах первичной глаукомы // Медицинский вестник Башкортостана. — 2015. — Т. 10. — № 2. — С. 162–165. [Zagidullina ASh. Phenotypes of primary glaucoma. Medical Bulletin of Bashkortostan. 2015;10(2):162–165. (In Russ.)]
  8. Shestopalov VI, Spurlock M, Gramlich OW, et al. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells. 2021;10(8):1973. doi: https://doi.org/10.3390/cells10081973
  9. Reina-Torres E, De Ieso ML, Pasquale LR, et al. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res. 2021;83:100922. doi: https://doi.org/10.1016/j.preteyeres.2020.100922
  10. Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res. 2011;93(2):178–186. doi: https://doi.org/10.1016/j.exer.2010.07.009
  11. Marola OJ, Howell GR, Libby RT. Vascular derived endothelin receptor A controls endothelin-induced retinal ganglion cell death. Cell Death Discov. 2022;8(1):207. doi: https://doi.org/10.1038/s41420-022-00985-8
  12. Hayashi KG, Hosoe M, Takahashi T. Placental expression and localization of endothelin-1 system and nitric oxide synthases during bovine pregnancy. Anim Reprod Sci. 2012;134(3–4):150–157. doi: https://doi.org/10.1016/j.anireprosci.2012.08.003
  13. Zhang L, Sui R. Effect of SNP polymorphisms of EDN1, EDNRA, and EDNRB gene on ischemic stroke. Cell Biochem Biophys. 2014;70(1):233–239. doi: https://doi.org/10.1007/s12013-014-9887-6
  14. Nunes PR, Mattioli SV, Sandrim VC. NLRP3 Activation and Its Relationship to Endothelial Dysfunction and Oxidative Stress: Implications for Preeclampsia and Pharmacological Interventions. Cells. 2021;10(11):2828. doi: https://doi.org/10.3390/cells10112828
  15. Гуманова Н.Г. Оксид азота, его циркулирующие метаболиты NO и их роль в функционировании человеческого организма и прогнозе риска сердечно-сосудистой смерти (часть I) // Профилактическая медицина. — 2021. — Т. 24. — № 9. — С. 102–109. [Gumanova NG. Nitric oxide, its circulating NO metabolites and their role in the functioning of the human body and the prognosis of the risk of cardiovascular death (part I). Preventive Medicine. 2021;24(9):102–109. (In Russ.)] doi: https://doi.org/10.17116/profmed202124091102
  16. Тикунова Е.В. Молекулярные основы этиопатогенеза первичной открытоугольной глаукомы // Научные ведомости. Серия Медицина. Фармация. — 2013. — № 11 (154). — С. 161–165. [Tikunova EV. Molecular bases of etiopathogenesis of primary open-angle glaucoma. Scientific Vedomosti Series Medicine. Pharmacy. 2013;11(154):161–165. (In Russ.)]
  17. Еричев В.П., Ганковская Л.В., Ковальчук Л.В., и др. Изменение некоторых иммунологических показателей слезной жидкости при избыточном рубцевании после антиглаукоматозных операций у пациентов с первичной открытоугольной глаукомой // Вестник офтальмологии. — 2010. — Т. 126. — № 3. — С. 25–29. [Erichev VP, Gankovskaya LV, Kovalchuk LV, et al. Changes in some immunological parameters of lacrimal fluid with excessive scarring after anti-glaucomatous operations in patients with primary open-angle glaucoma. Vestnik Oftalmologii. 2010;126(3):25–29. (In Russ.)]
  18. Гаврилова Т.В., Кинкулькина А.Р., Авагян А.С., и др. Ассоциация полиморфных маркеров в гене eNOS с риском развития первичной открытоугольной глаукомы у жителей Пермского края // Российский иммунологический журнал. — 2022. — Т. 25. — № 1. — С. 83–92. [Gavrilova TV, Kinkulkina AR, Avagyan AS, et al. Association of polymorphic markers in the eNOS gene with the risk of primary open-angle glaucoma in residents of the Perm region. Russian Immunological Journal. 2022;25(1):83–92. (In Russ.)] doi: https://doi.org/10.46235/1028-7221-1081-ABP
  19. Гаврилова Т.В., Кинкулькина А.Р., Авагян А.С., и др. Исследование ассоциации аллелей и генотипов полиморфного маркера Т786С гена еNOS при различных стадиях первичной открытоугольной глаукомы // Российский офтальмологический журнал. — 2024. — Т. 17. — № 1. — С. 28–31. [Gavrilova TV, Kinkulkina AR, Avakian AS, et al. Investigation of the association of alleles and genotypes of the polymorphic marker T786C of the eNOS gene at various stages of primary open-angle glaucoma. Russian Ophthalmological Journal. 2024;17(1):28–31. (In Russ.)] doi: https://doi.org/10.21516/2072-0076-2024-17-1-28-31
  20. Bueno-Pereira TO, Bertozzi-Matheus M, Zampieri GM, et al. Markers of Endothelial Dysfunction Are Attenuated by Resveratrol in Preeclampsia. Antioxidants (Basel). 2022;11(11):2111. doi: https://doi.org/10.3390/antiox11112111
  21. McGarry T, Biniecka M, Veale DJ, et al. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med. 2018;125:15–24. doi: https://doi.org/10.1016/j.freeradbiomed.2018.03.042
  22. Adornetto A, Russo R, Parisi V. Neuroinflammation as a target for glaucoma therapy. Neural Regen Res. 2019;14(3):391–394. doi: https://doi.org/10.4103/1673-5374.245465
  23. Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331–344. doi: https://doi.org/10.1016/j.tibs.2022.10.002
  24. Coyle S, Khan MN, Chemaly M, et al. Targeting the NLRP3 Inflammasome in Glaucoma. Biomolecules. 2021;11(8):1239. doi: https://doi.org/10.3390/biom11081239
  25. Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. Mol Neurodegener. 2020;15(1):26. doi: https://doi.org/10.1186/s13024-020-00372-w
  26. Yerramothu P, Vijay AK, Willcox MP. Inflammasomes, the eye and anti-inflammasome therapy. Eye (Lond). 2018;32(3):491–505. doi: https://doi.org/10.1038/eye.2017.241
  27. Coyle S, Khan MN, Chemaly M, et al. Targeting the NLRP3 Inflammasome in Glaucoma. Biomolecules. 2021;11(8):1239. doi: https://doi.org/10.3390/biom11081239
  28. Глаукома первичная открытоугольная: клинические рекомендации / Министерство здравоохранения РФ. — М., 2024. — 98 с. [Glaukoma pervichnaya otkrytougol’naya: klinicheskie rekomendacii / Ministerstvo zdravoohraneniya RF. Moscow; 2024. 98 s. (In Russ.)]
  29. Yasuda H, Kamide K, Takiuchi S, et al. Association of single nucleotide polymorphisms in endothelin family genes with the progression of atherosclerosis in patients with essential hypertension. J Hum Hypertens. 2007;21(11):883–892. doi: https://doi.org/10.1038/sj.jhh.1002234
  30. von Herrmann KM, Salas LA, Martinez EM, et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:24. doi: https://doi.org/10.1038/s41531-018-0061-5

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of genotype frequencies of the polymorphic marker rs5351 in the EDNRB gene in the study groups Note. The abscissa axis shows the study groups, the ordinate axis shows the genotype frequency in proportions; absolute values ​​are given in brackets; * — p ≤ 0.05.

下载 (140KB)
3. Fig. 2. Distribution of allele frequencies (A) and genotype frequencies (B) of the polymorphic marker rs7525979 in the NLRP3 gene in the study groups Note. The abscissa axis shows the study groups, the ordinate axis shows the allele frequency and genotype frequency in proportions, respectively; absolute values ​​are given in brackets; * — p ≤ 0.05.

下载 (260KB)
4. Fig. 3. Distribution of allele frequencies (A) and genotype frequencies (B) of the polymorphic marker rs7525979 in the NLRP3 gene in the study groups Note. The abscissa axis shows the study groups, the ordinate axis shows the allele frequency and genotype frequency in proportions, respectively; absolute values ​​are given in brackets; * — p ≤ 0.05.

下载 (421KB)

版权所有 © "Paediatrician" Publishers LLC, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».