Electronic nose technology in the diagnosis of prostate cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Prostate cancer is a significant problem in modern oncourology due to its high incidence and mortality, largely due to untimely diagnosis of the disease. This article provides an overview of current diagnostic methods, including biopsy and magnetic resonance imaging, highlighting their limitations such as invasiveness and insufficient sensitivity. Given the need for more accurate and non-invasive diagnostic techniques, the potential use of an “electronic nose” — a multisensory system capable of detecting volatile organic compounds in urine samples — is explored. The literature review indicates that the use of this technique may offer high sensitivity and specificity in detecting prostate cancer, comparable to results obtained from specially trained detection dogs. The article analyzes recent clinical studies that validate the effectiveness of the electronic nose in identifying prostate cancer and describes the machine learning methodologies employed for recognizing urine samples. It is important to create uniform standards for the analysis of the gas composition of urine using the electronic nose. For the widespread implementation of this diagnostic method, it is necessary to conduct large randomized studies with the formation of a sufficient evidence base.

About the authors

Mkrtich S. Mosoyan

Almazov National Medical Research Centre; Academician I.P. Pavlov First St. Petersburg State Medical University

Email: moso03@yandex.ru
ORCID iD: 0000-0003-3639-6863

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Igor E. Jahatspanian

Scientific and Production Association “Pribor”

Email: drjie@mail.ru
ORCID iD: 0000-0002-4858-6499

Cand. Sci. (Engineering)

Russian Federation, Saint Petersburg

Artyom A. Vasilev

Almazov National Medical Research Centre

Email: scapaflow12@gmail.com
SPIN-code: 3359-1097

MD

Russian Federation, Saint Petersburg

Vladimir A. Makeev

Almazov National Medical Research Centre

Author for correspondence.
Email: dr.makeev2016@mail.ru
SPIN-code: 9408-7310

MD

Russian Federation, Saint Petersburg

References

  1. Wood S, Knowles M, Thompson D, et al. Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers. Nat Rev Urol. 2013;10:206–218. doi: 10.1038/nrurol.2013.24
  2. Richards MA. The size of the prize for earlier diagnosis of cancer in England. Br J Cancer. 2009;101:125–129. doi: 10.1038/sj.bjc.6605402
  3. Siegel RL, Miller KD, Jemal A. Cancer statistics. Cancer J Clin. 2018;68(1):7–30. doi: 10.3322/caac.21442
  4. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660S
  5. Kaprin AD, Starinsky BB, Shakhzadova AO, editors. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Moscow: P.A. Herzen MNIOI. Branch of NMRC Radiology of the Ministry of Health of Russia; 2021. 252 p. (In Russ.)
  6. Nicholson BD, Hamilton W, O’Sullivan J, et al. Weight loss as a predictor of cancer in primary care: a systematic review and meta-analysis. Br J Gen Pract. 2018;68(670):e311–e322. doi: 10.3399/bjgp18X695801
  7. Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer — 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79(2):243–262. doi: 10.1016/j.eururo.2020.09.042
  8. European Association of Urology. Prostate cancer. 2024. Available from: https://uroweb.org/guideline/prostate-cancer/
  9. Arsov C, Albers P, Herkommer K, et al. A randomized trial of risk-adapted screening for prostate cancer in young men — results of the first screening round of the PROBASE trial. Int J Cancer. 2022;150(11):1861–1869. doi: 10.1002/ijc.33940
  10. Krilaviciute A, Becker N, Lakes J, et al. Digital rectal examination is not a useful screening test for prostate cancer. Eur Urol Oncol. 2023;6(6):566–573. doi: 10.1016/j.euo.2023.09.008
  11. Matsukawa A, Yanagisawa T, Bekku K, et al. Comparing the performance of digital rectal examination and prostate-specific antigen as a screening test for prostate cancer: A systematic review and meta-analysis. Eur Urol Oncol. 2024;7(4):697–704. doi: 10.1016/j.euo.2023.12.005
  12. Romero FR, Romero AW, Filho TB, et al. Patients’ perceptions of pain and discomfort during digital rectal exam for prostate cancer screening. Arch Esp Urol. 2008;61(6):850–854. doi: 10.4321/S0004-06142008000600019
  13. Rao AR, Motiwala HG, Karim OM. The discovery of prostate-specific antigen. BJU Int. 2007;101(1):5–10. doi: 10.1111/j.1464-410X.2007.07138.x
  14. Bax C, Taverna G, Eusebio L, et al. Innovative diagnostic methods for early prostate cancer detection through urine analysis: A review. Cancers. 2018;10(4):123. doi: 10.3390/cancers10040123
  15. Blute ML Jr, Abel EJ, Downs TM, et al. Addressing the need for repeat prostate biopsy: new technology and approaches. Nat Rev Urol. 2015;12(8):435–444. doi: 10.1038/nrurol.2015.159
  16. Pepe P, Panella P, Savoca F, et al. Prevalence and clinical significance of prostate cancer among 12,682 men with normal digital rectal examination, low psa levels (≤4 ng/ml) and Percent free PSA cutoff values of 15 and 20 %. Urol Int. 2007;78(4):308–312. doi: 10.1159/000100833
  17. Zlotta A, Egawa S, Pushkar D, et al. Prevalence of prostate cancer on autopsy: cross-sectional study on unscreened Caucasian and Asian men. J Natl Cancer Inst. 2013;105(14):1050–1058. doi: 10.1093/jnci/djt151
  18. Gao Q, Su X, Annabi MH, et al. Application of urinary volatile organic compounds (VOCs) for the diagnosis of prostate cancer. Clin Genitourin Cancer. 2019;17(3):183–190. doi: 10.1016/j.clgc.2019.02.003
  19. Barrett T, de Rooij M, Giganti F, et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway. Nat Rev Urol. 2023;20(1):9–22. doi: 10.1038/s41585-022-00648-4
  20. Grizzi F, Bax C, Hegazi MA, et al. Early detection of prostate cancer: The role of scent. Chemosensors. 2023;11(7):356. doi: 10.3390/chemosensors11070356
  21. Meissner VH, Rauscher I, Schwamborn K, et al. radical prostatectomy without prior biopsy following multiparametric magnetic resonance imaging and prostate-specific membrane antigen positron emission tomography. Eur Urol. 2022;82(2):156–160. doi: 10.1016/j.eururo.2021.11.019
  22. Sanda MG, Feng Z, Howard DH, et al. Association between combined TMPRSS2: ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 2017;3(8):1085–1093. doi: 10.1001/jamaoncol.2017.0177
  23. Haese A, Trooskens G, Steyaert S, et al. Multicenter optimization and validation of a 2-gene mRNA urine test for detection of clinically significant prostate cancer before initial prostate biopsy. J Urol. 2019;202(2):256–263. doi: 10.1097/JU.0000000000000293
  24. McKiernan J, Donovan MJ, Margolis E, et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/ml at initial biopsy. Eur Urol. 2018;74(6):731–738. doi: 10.1016/j.eururo.2018.08.019
  25. Becerra MF, Venkatasai SA, Bhattu AS, Punnen S. Serum and urine biomarkers for detecting clinically significant prostate cancer. Urol Oncol: Semin Orig Investig. 2021;39(10):686–690. doi: 10.1016/j.urolonc.2020.02.018
  26. Vickers AJ, Cronin, AM, Roobol MJ, et al. A four-kallikrein panel predicts prostate cancer in men with recent screening: Data from the European Randomized Study of Screening for Prostate Cancer, Rotterdam. Clin Cancer Res. 2010;16(12):3232–3239. doi: 10.1158/1078-0432.CCR-10-0122
  27. Galasso F, Giannella R, Bruni P, et al. PCA3: a new tool to diagnose prostate cancer (PCa) and a guidance in biopsy decisions. Preliminary report of the UrOP study. Arch Ital Urol Androl. 2010;82(1):5–9.
  28. Zappala SM, Scardino PT, Okrongly D, et al. Clinical performance of the 4Kscore Test to predict high-grade prostate cancer at biopsy: A meta-analysis of us and European clinical validation study results. Rev Urol. 2017;19(3):149–155. doi: 10.3909/riu0776
  29. Jordaens S, Zwaenepoel K, Tjalma W, et al. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer. 2023;152(10):2186–2205. doi: 10.1002/ijc.34434
  30. Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark. 2015;2015:981458. doi: 10.1155/2015/981458
  31. Hanna GB, Boshier PR, Markar SR, et al. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis: a systematic review and meta-analysis. JAMA Oncol. 2019;5(1):e182815. doi: 10.1001/jamaoncol.2018.2815
  32. Kusano M, Mendez E, Furton KG. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J Forensic Sci. 2013;58(1):29–39. doi: 10.1111/j.1556-4029.2012.02215.x
  33. Gallagher M, Wysocki C, Leyden J, et al. Analyses of volatile organic compounds from human skin. Br J Dermatol. 2008;159(4): 780–791. doi: 10.1111/j.1365-2133.2008.08748.x
  34. Ashley DL, Bonin MA, Cardinali FL, et al. Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal Chem. 1992;64(9):1021–1029. doi: 10.1021/ac00033a011
  35. Phillips M, Herrera J, Krishnan S, et al. Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl. 1999;729(1–2):75–88. doi: 10.1016/S0378-4347(99)00127-9
  36. Costello BL, Ratcliffe N.M. Volatile organic compounds (VOCs) found in urine and stool. In: Volatile biomarkers. Amsterdam: Elsevier; 2013. P. 405–462. doi: 10.1016/B978-0-44-462613-4.00022-2
  37. Balseiro SC, Correia HR. Is olfactory detection of human cancer by dogs based on major histocompatibility complex-dependent odour components? A possible cure and a precocious diagnosis of cancer. Med Hypotheses. 2006;66(2):270–272. doi: 10.1016/j.mehy.2005.08.027
  38. Taverna G, Grizzi F, Tidu L, et al. Accuracy of a new electronic nose for prostate cancer diagnosis in urine samples. Int J Urol. 2022;29(8):890–896. doi: 10.1111/iju.14912
  39. Boedeker E, Friedel G, Walles T. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening. Interact Cardiovasc Thorac Surg. 2012;14(5):511–515. doi: 10.1093/icvts/ivr070
  40. Taverna G, Tidu L, Grizzi F, et al. Olfactory system of highly trained dogs detects prostate cancer in urine samples. J Urol. 2015;193(4):1382–1387. doi: 10.1016/j.juro.2014.09.099
  41. MacGregor M, Shirazi SH, Chan KM, et al. Cancer cell detection device for the diagnosis of bladder cancer from urine. Biosens Bioelectron. 2020;171:112699. doi: 10.1016/j.bios.2020.112699
  42. Chan KM, Gleadle JM, Gregory PA, et al. Selective microfluidic capture and detection of prostate cancer cells from urine without digital rectal examination. Cancers. 2021;13(21):5544. doi: 10.3390/cancers13215544
  43. Lippi G, Cervellin G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity. Clin Chem Lab Med. 2012;50(3):435–439. doi: 10.1515/cclm.2011.672
  44. Capelli L, Bax C, Grizzi F, Taverna G. Optimization of training and measurement protocol for eNose analysis of urine headspace aimed at prostate cancer diagnosis. Sci Rep. 2021;11:20898. doi: 10.1038/s41598-021-00033-y
  45. Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer. 2021;125:1185–1196. doi: 10.1038/s41416-021-01435-5
  46. Novikova LB, Kuchmenko TA. The analytical capabilities of the systems of artificial sense of smell and taste. Part 1. “Electronic nose”. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(3):236–241. doi: 10.20914/2310-1202-2019-3-236-241 EDN: XHBHXS
  47. Pearce TC. Computational parallels between the biological olfactory pathway and its analogue “The Electronic Nose”: Part II. Sensor-based machine olfaction. Biosystems. 1997;41(2):69–90. doi: 10.1016/S0303-2647(96)01660-7
  48. Sankaran S, Khot LR, Panigrahi S. Biology and applications of olfactory sensing system: a review. Sens Actuator B Chem. 2012; 171–172:1–17. doi: 10.1016/j.snb.2012.03.029
  49. Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem. Nature. 2001;414:293–296. doi: 10.1038/35104535
  50. Francesco F, Fuoco R, Trivella MG, et al. Breath analysis: trends in techniques and clinical applications. Microchem J. 2005;79(1–2): 405–410. doi: 10.1016/j.microc.2004.10.008
  51. Karakaya D, Ulucan O, Turkan M. Electronic nose and its applications: a survey. Int J Autom Comput. 2020;17:179–209. doi: 10.1007/s11633-019-1212-9
  52. Cheng L, Meng Q, Lilienthal AJ, Qi P-F. Development of compact electronic noses: A review. Meas Sci Technol. 2021;32(6):062002. doi: 10.1088/1361-6501/abef3b
  53. Sauerbrey G. Use of quartz crystals for weighing thin films and for microweighing. Z Physik. 1959;155:206–222. doi: 10.1007/BF01337937
  54. Asimakopoulos A, Del Fabbro D, Miano R, et al. Prostate cancer diagnosis through electronic nose in the urine headspace setting: a pilot study. Prostate Cancer Prostatic Dis. 2014;17:206–211. doi: 10.1038/pcan.2014.11
  55. D’Amico A, Santonico M, Pennazza G, et al. A Novel approach for prostate cancer diagnosis using a gas sensor array. Procedia Eng. 2012;47:1113–1116. doi: 10.1016/j.proeng.2012.09.346
  56. Roine A, Veskimae E, Tuokko A, et al. Detection of prostate cancer by an electronic nose: A proof of principle study. J Urol. 2014;192(1):230–234. doi: 10.1016/j.juro.2014.01.113
  57. Solovieva S, Karnaukh M, Panchuk V, et al. Potentiometric multisensor system as a possible simple tool for non-invasive prostate cancer diagnostics through urine analysis. Sens Actuators B: Chem. 2019;289:42–47. doi: 10.1016/j.snb.2019.03.072
  58. Filianoti A, Costantini M, Bove AM, et al. Volatilome analysis in prostate cancer by electronic nose: A pilot monocentric study. Cancers. 2022;14(12):2927. doi: 10.3390/cancers14122927
  59. Taverna G, Grizzi F, Bax C, et al. Prostate cancer risk stratification via eNose urine odor analysis: a preliminary report. Front Oncol. 2024;14:1339796. doi: 10.3389/fonc.2024.1339796
  60. Durán Acevedo CM, Carrillo Gómez JK, Cuastumal Vasquez CA, Ramos J. Prostate cancer detection in Colombian patients through e-senses devices in exhaled breath and urine samples. Chemosensors. 2024;12(1):11. doi: 10.3390/chemosensors12010011
  61. Heers H, Chwilka O, Huber J, et al. VOC-based detection of prostate cancer using an electronic nose and ion mobility spectrometry: A novel urine-based approach. Prostate. 2024;84(8):756–762. doi: 10.1002/pros.24692
  62. Janfaza S, Banan Nojavani M, Khorsand B, Nikkhah M. Cancer odor database (COD): a critical databank for cancer diagnosis research. Database. 2017;2017:bax055. doi: 10.1093/database/bax055
  63. Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol. 2011;48(6–7):427–437. doi: 10.1016/j.enzmictec.2011.04.003
  64. Biasioli F, Yeretzian C, Mark TD, et al. Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis. TrAC Trends Anal Chem. 2011;30(7):1003–1017. doi: 10.1016/j.trac.2011.04.005
  65. Bax C, Prudenza S, Gaspari G, et al. Drift compensation on electronic nose data for noninvasive diagnosis of prostate cancer by urine analysis. iScience. 2021;25(1):103622. doi: 10.1016/j.isci.2021.103622

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm for odor recognition using an electronic nose (comparative diagram of biological and electronic noses). Photo: Marianna Yerknapeshyan / Scientific Russia. Information sourced from the portal “Scientific Russia” (https://scientificrussia.ru/).

Download (223KB)
3. Fig. 2. Electronic nose “Aramos 7”. Photo source: NPO “Pribor” (Saint Petersburg).

Download (224KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».