Electronic nose technology in the diagnosis of prostate cancer
- Authors: Mosoyan M.S.1,2, Jahatspanian I.E.3, Vasilev A.A.1, Makeev V.A.1
-
Affiliations:
- Almazov National Medical Research Centre
- Academician I.P. Pavlov First St. Petersburg State Medical University
- Scientific and Production Association “Pribor”
- Issue: Vol 15, No 1 (2025)
- Pages: 63-73
- Section: Reviews
- URL: https://bakhtiniada.ru/uroved/article/view/314197
- DOI: https://doi.org/10.17816/uroved642499
- ID: 314197
Cite item
Abstract
Prostate cancer is a significant problem in modern oncourology due to its high incidence and mortality, largely due to untimely diagnosis of the disease. This article provides an overview of current diagnostic methods, including biopsy and magnetic resonance imaging, highlighting their limitations such as invasiveness and insufficient sensitivity. Given the need for more accurate and non-invasive diagnostic techniques, the potential use of an “electronic nose” — a multisensory system capable of detecting volatile organic compounds in urine samples — is explored. The literature review indicates that the use of this technique may offer high sensitivity and specificity in detecting prostate cancer, comparable to results obtained from specially trained detection dogs. The article analyzes recent clinical studies that validate the effectiveness of the electronic nose in identifying prostate cancer and describes the machine learning methodologies employed for recognizing urine samples. It is important to create uniform standards for the analysis of the gas composition of urine using the electronic nose. For the widespread implementation of this diagnostic method, it is necessary to conduct large randomized studies with the formation of a sufficient evidence base.
Full Text
##article.viewOnOriginalSite##About the authors
Mkrtich S. Mosoyan
Almazov National Medical Research Centre; Academician I.P. Pavlov First St. Petersburg State Medical University
Email: moso03@yandex.ru
ORCID iD: 0000-0003-3639-6863
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint Petersburg; Saint PetersburgIgor E. Jahatspanian
Scientific and Production Association “Pribor”
Email: drjie@mail.ru
ORCID iD: 0000-0002-4858-6499
Cand. Sci. (Engineering)
Russian Federation, Saint PetersburgArtyom A. Vasilev
Almazov National Medical Research Centre
Email: scapaflow12@gmail.com
SPIN-code: 3359-1097
MD
Russian Federation, Saint PetersburgVladimir A. Makeev
Almazov National Medical Research Centre
Author for correspondence.
Email: dr.makeev2016@mail.ru
SPIN-code: 9408-7310
MD
Russian Federation, Saint PetersburgReferences
- Wood S, Knowles M, Thompson D, et al. Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers. Nat Rev Urol. 2013;10:206–218. doi: 10.1038/nrurol.2013.24
- Richards MA. The size of the prize for earlier diagnosis of cancer in England. Br J Cancer. 2009;101:125–129. doi: 10.1038/sj.bjc.6605402
- Siegel RL, Miller KD, Jemal A. Cancer statistics. Cancer J Clin. 2018;68(1):7–30. doi: 10.3322/caac.21442
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660S
- Kaprin AD, Starinsky BB, Shakhzadova AO, editors. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Moscow: P.A. Herzen MNIOI. Branch of NMRC Radiology of the Ministry of Health of Russia; 2021. 252 p. (In Russ.)
- Nicholson BD, Hamilton W, O’Sullivan J, et al. Weight loss as a predictor of cancer in primary care: a systematic review and meta-analysis. Br J Gen Pract. 2018;68(670):e311–e322. doi: 10.3399/bjgp18X695801
- Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer — 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79(2):243–262. doi: 10.1016/j.eururo.2020.09.042
- European Association of Urology. Prostate cancer. 2024. Available from: https://uroweb.org/guideline/prostate-cancer/
- Arsov C, Albers P, Herkommer K, et al. A randomized trial of risk-adapted screening for prostate cancer in young men — results of the first screening round of the PROBASE trial. Int J Cancer. 2022;150(11):1861–1869. doi: 10.1002/ijc.33940
- Krilaviciute A, Becker N, Lakes J, et al. Digital rectal examination is not a useful screening test for prostate cancer. Eur Urol Oncol. 2023;6(6):566–573. doi: 10.1016/j.euo.2023.09.008
- Matsukawa A, Yanagisawa T, Bekku K, et al. Comparing the performance of digital rectal examination and prostate-specific antigen as a screening test for prostate cancer: A systematic review and meta-analysis. Eur Urol Oncol. 2024;7(4):697–704. doi: 10.1016/j.euo.2023.12.005
- Romero FR, Romero AW, Filho TB, et al. Patients’ perceptions of pain and discomfort during digital rectal exam for prostate cancer screening. Arch Esp Urol. 2008;61(6):850–854. doi: 10.4321/S0004-06142008000600019
- Rao AR, Motiwala HG, Karim OM. The discovery of prostate-specific antigen. BJU Int. 2007;101(1):5–10. doi: 10.1111/j.1464-410X.2007.07138.x
- Bax C, Taverna G, Eusebio L, et al. Innovative diagnostic methods for early prostate cancer detection through urine analysis: A review. Cancers. 2018;10(4):123. doi: 10.3390/cancers10040123
- Blute ML Jr, Abel EJ, Downs TM, et al. Addressing the need for repeat prostate biopsy: new technology and approaches. Nat Rev Urol. 2015;12(8):435–444. doi: 10.1038/nrurol.2015.159
- Pepe P, Panella P, Savoca F, et al. Prevalence and clinical significance of prostate cancer among 12,682 men with normal digital rectal examination, low psa levels (≤4 ng/ml) and Percent free PSA cutoff values of 15 and 20 %. Urol Int. 2007;78(4):308–312. doi: 10.1159/000100833
- Zlotta A, Egawa S, Pushkar D, et al. Prevalence of prostate cancer on autopsy: cross-sectional study on unscreened Caucasian and Asian men. J Natl Cancer Inst. 2013;105(14):1050–1058. doi: 10.1093/jnci/djt151
- Gao Q, Su X, Annabi MH, et al. Application of urinary volatile organic compounds (VOCs) for the diagnosis of prostate cancer. Clin Genitourin Cancer. 2019;17(3):183–190. doi: 10.1016/j.clgc.2019.02.003
- Barrett T, de Rooij M, Giganti F, et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway. Nat Rev Urol. 2023;20(1):9–22. doi: 10.1038/s41585-022-00648-4
- Grizzi F, Bax C, Hegazi MA, et al. Early detection of prostate cancer: The role of scent. Chemosensors. 2023;11(7):356. doi: 10.3390/chemosensors11070356
- Meissner VH, Rauscher I, Schwamborn K, et al. radical prostatectomy without prior biopsy following multiparametric magnetic resonance imaging and prostate-specific membrane antigen positron emission tomography. Eur Urol. 2022;82(2):156–160. doi: 10.1016/j.eururo.2021.11.019
- Sanda MG, Feng Z, Howard DH, et al. Association between combined TMPRSS2: ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol. 2017;3(8):1085–1093. doi: 10.1001/jamaoncol.2017.0177
- Haese A, Trooskens G, Steyaert S, et al. Multicenter optimization and validation of a 2-gene mRNA urine test for detection of clinically significant prostate cancer before initial prostate biopsy. J Urol. 2019;202(2):256–263. doi: 10.1097/JU.0000000000000293
- McKiernan J, Donovan MJ, Margolis E, et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/ml at initial biopsy. Eur Urol. 2018;74(6):731–738. doi: 10.1016/j.eururo.2018.08.019
- Becerra MF, Venkatasai SA, Bhattu AS, Punnen S. Serum and urine biomarkers for detecting clinically significant prostate cancer. Urol Oncol: Semin Orig Investig. 2021;39(10):686–690. doi: 10.1016/j.urolonc.2020.02.018
- Vickers AJ, Cronin, AM, Roobol MJ, et al. A four-kallikrein panel predicts prostate cancer in men with recent screening: Data from the European Randomized Study of Screening for Prostate Cancer, Rotterdam. Clin Cancer Res. 2010;16(12):3232–3239. doi: 10.1158/1078-0432.CCR-10-0122
- Galasso F, Giannella R, Bruni P, et al. PCA3: a new tool to diagnose prostate cancer (PCa) and a guidance in biopsy decisions. Preliminary report of the UrOP study. Arch Ital Urol Androl. 2010;82(1):5–9.
- Zappala SM, Scardino PT, Okrongly D, et al. Clinical performance of the 4Kscore Test to predict high-grade prostate cancer at biopsy: A meta-analysis of us and European clinical validation study results. Rev Urol. 2017;19(3):149–155. doi: 10.3909/riu0776
- Jordaens S, Zwaenepoel K, Tjalma W, et al. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer. 2023;152(10):2186–2205. doi: 10.1002/ijc.34434
- Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomark. 2015;2015:981458. doi: 10.1155/2015/981458
- Hanna GB, Boshier PR, Markar SR, et al. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis: a systematic review and meta-analysis. JAMA Oncol. 2019;5(1):e182815. doi: 10.1001/jamaoncol.2018.2815
- Kusano M, Mendez E, Furton KG. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J Forensic Sci. 2013;58(1):29–39. doi: 10.1111/j.1556-4029.2012.02215.x
- Gallagher M, Wysocki C, Leyden J, et al. Analyses of volatile organic compounds from human skin. Br J Dermatol. 2008;159(4): 780–791. doi: 10.1111/j.1365-2133.2008.08748.x
- Ashley DL, Bonin MA, Cardinali FL, et al. Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal Chem. 1992;64(9):1021–1029. doi: 10.1021/ac00033a011
- Phillips M, Herrera J, Krishnan S, et al. Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl. 1999;729(1–2):75–88. doi: 10.1016/S0378-4347(99)00127-9
- Costello BL, Ratcliffe N.M. Volatile organic compounds (VOCs) found in urine and stool. In: Volatile biomarkers. Amsterdam: Elsevier; 2013. P. 405–462. doi: 10.1016/B978-0-44-462613-4.00022-2
- Balseiro SC, Correia HR. Is olfactory detection of human cancer by dogs based on major histocompatibility complex-dependent odour components? A possible cure and a precocious diagnosis of cancer. Med Hypotheses. 2006;66(2):270–272. doi: 10.1016/j.mehy.2005.08.027
- Taverna G, Grizzi F, Tidu L, et al. Accuracy of a new electronic nose for prostate cancer diagnosis in urine samples. Int J Urol. 2022;29(8):890–896. doi: 10.1111/iju.14912
- Boedeker E, Friedel G, Walles T. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening. Interact Cardiovasc Thorac Surg. 2012;14(5):511–515. doi: 10.1093/icvts/ivr070
- Taverna G, Tidu L, Grizzi F, et al. Olfactory system of highly trained dogs detects prostate cancer in urine samples. J Urol. 2015;193(4):1382–1387. doi: 10.1016/j.juro.2014.09.099
- MacGregor M, Shirazi SH, Chan KM, et al. Cancer cell detection device for the diagnosis of bladder cancer from urine. Biosens Bioelectron. 2020;171:112699. doi: 10.1016/j.bios.2020.112699
- Chan KM, Gleadle JM, Gregory PA, et al. Selective microfluidic capture and detection of prostate cancer cells from urine without digital rectal examination. Cancers. 2021;13(21):5544. doi: 10.3390/cancers13215544
- Lippi G, Cervellin G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity. Clin Chem Lab Med. 2012;50(3):435–439. doi: 10.1515/cclm.2011.672
- Capelli L, Bax C, Grizzi F, Taverna G. Optimization of training and measurement protocol for eNose analysis of urine headspace aimed at prostate cancer diagnosis. Sci Rep. 2021;11:20898. doi: 10.1038/s41598-021-00033-y
- Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer. 2021;125:1185–1196. doi: 10.1038/s41416-021-01435-5
- Novikova LB, Kuchmenko TA. The analytical capabilities of the systems of artificial sense of smell and taste. Part 1. “Electronic nose”. Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(3):236–241. doi: 10.20914/2310-1202-2019-3-236-241 EDN: XHBHXS
- Pearce TC. Computational parallels between the biological olfactory pathway and its analogue “The Electronic Nose”: Part II. Sensor-based machine olfaction. Biosystems. 1997;41(2):69–90. doi: 10.1016/S0303-2647(96)01660-7
- Sankaran S, Khot LR, Panigrahi S. Biology and applications of olfactory sensing system: a review. Sens Actuator B Chem. 2012; 171–172:1–17. doi: 10.1016/j.snb.2012.03.029
- Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem. Nature. 2001;414:293–296. doi: 10.1038/35104535
- Francesco F, Fuoco R, Trivella MG, et al. Breath analysis: trends in techniques and clinical applications. Microchem J. 2005;79(1–2): 405–410. doi: 10.1016/j.microc.2004.10.008
- Karakaya D, Ulucan O, Turkan M. Electronic nose and its applications: a survey. Int J Autom Comput. 2020;17:179–209. doi: 10.1007/s11633-019-1212-9
- Cheng L, Meng Q, Lilienthal AJ, Qi P-F. Development of compact electronic noses: A review. Meas Sci Technol. 2021;32(6):062002. doi: 10.1088/1361-6501/abef3b
- Sauerbrey G. Use of quartz crystals for weighing thin films and for microweighing. Z Physik. 1959;155:206–222. doi: 10.1007/BF01337937
- Asimakopoulos A, Del Fabbro D, Miano R, et al. Prostate cancer diagnosis through electronic nose in the urine headspace setting: a pilot study. Prostate Cancer Prostatic Dis. 2014;17:206–211. doi: 10.1038/pcan.2014.11
- D’Amico A, Santonico M, Pennazza G, et al. A Novel approach for prostate cancer diagnosis using a gas sensor array. Procedia Eng. 2012;47:1113–1116. doi: 10.1016/j.proeng.2012.09.346
- Roine A, Veskimae E, Tuokko A, et al. Detection of prostate cancer by an electronic nose: A proof of principle study. J Urol. 2014;192(1):230–234. doi: 10.1016/j.juro.2014.01.113
- Solovieva S, Karnaukh M, Panchuk V, et al. Potentiometric multisensor system as a possible simple tool for non-invasive prostate cancer diagnostics through urine analysis. Sens Actuators B: Chem. 2019;289:42–47. doi: 10.1016/j.snb.2019.03.072
- Filianoti A, Costantini M, Bove AM, et al. Volatilome analysis in prostate cancer by electronic nose: A pilot monocentric study. Cancers. 2022;14(12):2927. doi: 10.3390/cancers14122927
- Taverna G, Grizzi F, Bax C, et al. Prostate cancer risk stratification via eNose urine odor analysis: a preliminary report. Front Oncol. 2024;14:1339796. doi: 10.3389/fonc.2024.1339796
- Durán Acevedo CM, Carrillo Gómez JK, Cuastumal Vasquez CA, Ramos J. Prostate cancer detection in Colombian patients through e-senses devices in exhaled breath and urine samples. Chemosensors. 2024;12(1):11. doi: 10.3390/chemosensors12010011
- Heers H, Chwilka O, Huber J, et al. VOC-based detection of prostate cancer using an electronic nose and ion mobility spectrometry: A novel urine-based approach. Prostate. 2024;84(8):756–762. doi: 10.1002/pros.24692
- Janfaza S, Banan Nojavani M, Khorsand B, Nikkhah M. Cancer odor database (COD): a critical databank for cancer diagnosis research. Database. 2017;2017:bax055. doi: 10.1093/database/bax055
- Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol. 2011;48(6–7):427–437. doi: 10.1016/j.enzmictec.2011.04.003
- Biasioli F, Yeretzian C, Mark TD, et al. Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis. TrAC Trends Anal Chem. 2011;30(7):1003–1017. doi: 10.1016/j.trac.2011.04.005
- Bax C, Prudenza S, Gaspari G, et al. Drift compensation on electronic nose data for noninvasive diagnosis of prostate cancer by urine analysis. iScience. 2021;25(1):103622. doi: 10.1016/j.isci.2021.103622
Supplementary files
