Legg–Calvé–Perthes disease presenting with osteoarthritis: Mechanisms of the development and prospects of conservative therapy using bisphosphonates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: Aseptic necrosis of the femoral head in children remains a subject of great interest among specialists, despite its long history of study. The Legg–Calvé–Perthes disease is the most common form of aseptic necrosis of the femoral head in children. The necrotic lesion in the femoral head results from the blockage of the arterial blood supply to the epiphysis, leading to its infarction. Some children experience a more aggressive disease course, with signs of osteoarthritis, which can result in the early development of coxarthrosis. Numerous publications have demonstrated the successful use of bisphosphonates in adult patients with aseptic necrosis of the femoral head.

AIM: To generalize data on the use of bisphosphonates in children with the Legg–Calvé–Perthes disease presenting with signs of osteoarthritis through the analysis of contemporary global literature.

MATERIALS AND METHODS: A literature search was conducted in the open databases of PubMed, Science Direct, and Google Scholar, and the analysis depth spanned 20 years. The search terms used included “Legg–Calvé–Perthes disease,” “aseptic (avascular) necrosis of the femoral head,” and “bisphosphonates.” The review encompassed the literature on bisphosphonates, their biological action, effectiveness of their use in patients with aseptic necrosis of the femoral head, and results of our research.

RESULTS: Studies on the efficacy of bisphosphonates in children with Legg–Calvé–Perthes disease are limited. Currently, the effect of bisphosphonates on disease course and outcome is unknown. Despite this, mechanisms of chronic inflammation are increasingly mentioned in the literature, which may directly or indirectly influence the clinical course and outcome of the disease. The key is the hyperactivity of osteoclasts in osteonecrosis. The experience of using bisphosphonates in adult patients with aseptic necrosis of the femoral head had positive results in preventing the progression of the deformity of femoral head deformity.

CONCLUSIONS: Bisphosphonates are specific inhibitors of osteoclast activity, which has been used in many diseases. The results and inferences of using bisphosphonates in children with Legg–Calvé–Perthes disease will lead to the formulation of a new treatment algorithm.

作者简介

Aleksei Kozhevnikov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; Saint Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: infant_doc@mail.ru
ORCID iD: 0000-0003-0509-6198
SPIN 代码: 1230-6803
Scopus 作者 ID: 57193337958

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Dmitrii Barsukov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: dbbarsukov@gmail.com
ORCID iD: 0000-0002-9084-5634
SPIN 代码: 2454-6548

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Aigul Gubaeva

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: little1ashley3@yandex.ru
ORCID iD: 0000-0002-7056-4923

MD, resident

俄罗斯联邦, Saint Petersburg

参考

  1. Rodríguez-Olivas AO, Hernández-Zamora E, Reyes-Maldonado E. Legg-Calvé-Perthes disease overview. Orphanet J Rare Dis. 2022;17(1):125. doi: 10.1186/s13023-022-02275-z
  2. Kozhevnikov OV, Lysikov VA, Ivanov AV. Legg-Calve-Perthes disease: etiology, pathogenesis diagnosis and treatment. N.N. Priorov Journal of Traumatology and Orthopedics. 2017;24(1):77–87. (In Russ.) doi: 10.17816/vto201724177-87
  3. Shah H. Perthes disease: evaluation and management. Orthop Clin North Am. 2014;45(1):87–97. doi: 10.1016/j.ocl.2013.08.005
  4. Leo DG, Jones H, Murphy R, et al. The outcomes of Perthes’ disease. Bone Joint J. 2020;102-B(5):611–617. doi: 10.1302/0301-620X.102B5.BJJ-2020-0072
  5. Kim HK. Pathophysiology and new strategies for the treatment of Legg-Calve-Perthes disease. J Bone Joint Surg Am. 2012;94(7):659–669. doi: 10.2106/JBJS.J.01834
  6. Martí-Carvajal AJ, Solà I, Agreda-Pérez LH. Treatment for avascular necrosis of bone in people with sickle cell disease. Cochrane Database Syst Rev. 2019;12(12). doi: 10.1002/14651858.CD004344.pub7
  7. Liu N, Zheng C, Wang Q, et al. Treatment of non-traumatic avascular necrosis of the femoral head (Review). Exp Ther Med. 2022;23(5):321. doi: 10.3892/etm.2022.11250
  8. Kumar V, Ali S, Verma V, et al. Do bisphosphonates alter the clinico-radiological profile of children with Perthes disease? A systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(15):4875–4894. doi: 10.26355/eurrev_202108_26445
  9. Krutikova NYu, Vinogradova AG. Legg–Calve–Perthes Disease. Current Pediatrics. 2015;14(5):548–552. (In Russ.) doi: 10.15690/vsp.v14i5.1437
  10. Pavone V, Chisari E, Vescio A, et al. Aetiology of Legg-Calvé-Perthes disease: a systematic review. World J Orthop. 2019;10(3):145–165. doi: 10.5312/wjo.v10.i3.145
  11. Gurion R, Tangpricha V, Yow E; et al. Atherosclerosis prevention in pediatric lupus erythematosus investigators. avascular necrosis in pediatric systemic lupus erythematosus: a brief report and review of the literature. Pediatr Rheumatol Online J. 2015;13:13. doi: 10.1186/s12969-015-0008-x
  12. Kim HK. Legg-Calve-Perthes disease: etiology, pathogenesis, and biology. J Pediatr Orthop. 2011;31(2):S141–S146. doi: 10.1097/BPO.0b013e318223b4bd
  13. Alexeeva EI., Dvoryakovskaya TM., Nikishina IP, et al. Systemic lupus erythematosus: clinical recommendations. Part 1. Current Pediatrics. 2018;17(1):19–37. (In Russ.) doi: 10.15690/vsp.v17i1.1853
  14. Sayarlioglu M, Yuzbasioglu N, Inanc M, et al. Risk factors for avascular bone necrosis in patients with systemic lupus erythematosus. Rheumatol Int. 2012;32(1):177–182. doi: 10.1007/s00296-010-1597-9
  15. Benaziez F, Remilaoui A, Bahaz N, et al. Juvenile idiopathic arthritis and corticosteroid-induced osteonecrosis of the femoral head. Br J Rheumatol. 2022;61(2):4. doi: 10.1093/rheumatology/keac496.004
  16. Perry DC, Bruce CE, Pope D et al. Legg-Calve-Perthes disease in the UK: geographic and temporal trends in incidence reflecting differences in degree of deprivation in childhood. Arthritis Rheum. 2012;64(5):1673–1679. doi: 10.1002/art.34316
  17. Al-Naser S, Judd J, Clarke NMP. The effects of vitamin D deficiency on the natural progression of Perthes’ disease. Bone and Joint (BJJ). 2014;96-B(1):7. doi: 10.1302/1358-992X.96BSUPP_1.BSCOS2013-007
  18. Mailhot G, White JH. Vitamin D and immunity in infants and children. Nutrients. 2020;12(5):1233. doi: 10.3390/nu12051233
  19. Leandro MP, Almeida ND, Hocevar LS, et al. Polymorphisms and avascular necrosis in patients with sickle cell disease – a systematic review. Rev Paul Pediatr. 2022;40. doi: 10.1590/1984-0462/2022/40/2021013IN
  20. Zhang Z, Zhu K, Dai H, et al. A novel mutation of COL2A1 in a large Chinese family with avascular necrosis of the femoral head. BMC Med Genomics. 2021;14(1):147. doi: 10.1186/s12920-021-00995-y
  21. Basit S, Khoshhal KI. Clinical and genetic characteristics of Legg-Calve-Perthes disease. J Musculoskelet Surg Res. 2022;6:1–8. doi: 10.25259/JMSR_123_2021
  22. Ren Y, Deng Z, Gokani V, et al. Anti-interleukin-6 therapy decreases hip synovitis and bone resorption and increases bone formation following ischemic osteonecrosis of the femoral head. J Bone Miner Res. 2021;36(2):357–368. doi: 10.1002/jbmr.4191
  23. Campos LM, Kiss MH, D’Amico EA, et al. Antiphospholipid antibodies and antiphospholipid syndrome in 57 children and adolescents with systemic lupus erythematosus. Lupus. 2003;12(11):820–826. doi: 10.1191/0961203303lu471oa
  24. Kamiya N, Yamaguchi R, Adapala NS, et al. Legg-Calvé-Perthes disease produces chronic hip synovitis and elevation of interleukin-6 in the synovial fluid. J Bone Miner Res. 2015;30(6):1009–1013. doi: 10.1002/jbmr.2435
  25. Wang C, Meng H, Wang Y, et al. Analysis of early stage osteonecrosis of the human femoral head and the mechanism of femoral head collapse. Int J Biol Sci. 2018;14(2):156–164. doi: 10.7150/ijbs.18334
  26. Li Y, Wang Y, Guo Y, et al. OPG and RANKL polymorphisms are associated with alcohol-induced osteonecrosis of the femoral head in the north area of China population in men. Medicine (Baltimore). 2016;95(25). doi: 10.1097/MD.0000000000003981
  27. Gori F, Hofbauer LC, Dunstan CR, et al. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology. 2000;141:4768–4776. doi: 10.1210/endo.141.12.7840
  28. Kim HK, Morgan-Bagley S, Kostenuik P. RANKL inhibition: a novel strategy to decrease femoral head deformity after ischemic osteonecrosis. J Bone Miner Res. 2006;21(12):1946–1954. doi: 10.1359/jbmr.060905
  29. Shabaldin NA, Golovkin, SI, Shabaldin AV. Clinical and immunological features of transient synovitis of the hip joint and disease Legg-Calve-Perthes in children of early and school age. Mother and Baby in Kuzbass. 2016;64(1):21–26. (In Russ.)
  30. Nelitz M, Lippacher S, Krauspe R, et al. Perthes disease: current principles of diagnosis and treatment. Dtsch Arztebl Int. 2009;106(31–32):517–523. doi: 10.3238/arztebl.2009.0517
  31. Divi SN, Bielski RJ. Legg-Calvé-Perthes disease. Pediatr Ann. 2016;45(4):144–149. doi: 10.3928/00904481-20160310-03
  32. Kim HK, Herring JA. Pathophysiology, classifications, and natural history of Perthes disease. Orthop Clin N Am. 2011;42(3):285–295. doi: 10.1016/j.ocl.2011.04.007
  33. Ibrahim T, Little DG. The Pathogenesis and treatment of Legg-Calvé-Perthes Disease. JBJS Rev. 2016;4(7). doi: 10.2106/JBJS.RVW.15.00063
  34. Lisitsyn A, Alexeeva E, Pinelis V, et al. Experience of treatment with ibandronic acid in patients with rheumatological diseases and systemic osteoporosis. Current Pediatrics. 2010;9(1):116–121. (In Russ.)
  35. Fernández-Martín S, López-Peña M, Muñoz F, et al. Bisphosphonates as disease-modifying drugs in osteoarthritis preclinical studies: a systematic review from 2000 to 2020. Arthritis Res Ther. 2021;23(1):60. doi: 10.1186/s13075-021-02446-6
  36. Khomenko AI, Lobko SS. Bisphosphonates in the treatment for osteoporosis Meditsinskie novosti. 2014;7:27–31. (In Russ.)
  37. Krylov MYu, Nikitinskaya OA, Samarkina EYu, et al. Farnesyl diphosphate synthase (FDRS) and geranylgeranyl diphosphate synthase (GGSP1) gene polymorphisms and efficiency of therapy with bisphosphonates in russian women with postmenopausal osteoporosis: a pilot study. Rheumatology Science and Practice. 2016;54(1):49–52. (In Russ.) doi: 10.14412/1995-4484-2016-49-52
  38. Yakushevskaya OV, Yureneva SV. Patogeneticheskie osnovy razvitiya ostroy fazy otveta na vnutrivennoe vvedenie azotsoderzhashchikh bisfosfonatov. Osteoporosis and Bone Diseases. 2014;17(1):30–32. (In Russ.) doi: 10.14341/osteo2014130-32
  39. D Orth SA, Vijayvargiya M. A paradigm shift in osteonecrosis treatment with bisphosphonates: a 20-year study. JB JS Open Access. 2021;6(4). doi: 10.2106/JBJS.OA.21.00042
  40. Hsu SL, Wang CJ, Lee MS et al. Cocktail therapy for femoral head necrosis of the hip. Arch Orthop Trauma Surg. 2010;130(1):23–29. doi: 10.1007/s00402-009-0918-5
  41. Nishii T, Sugano N, Miki H, et al. Does alendronate prevent collapse in osteonecrosis of the femoral head? Clin Orthop Relat Res. 2006;443:273–279. doi: 10.1097/01.blo.0000194078.32776.31
  42. Li D, Yang Z, Wei Z, et al. Efficacy of bisphosphonates in the treatment of femoral head osteonecrosis: a PRISMA-compliant meta-analysis of animal studies and clinical trials. Sci Rep. 2018;8(1):1450. doi: 10.1038/s41598-018-19884-z
  43. Fan M, Jiang WX, Wang AY, et al. Effect and mechanism of zoledronate on prevention of collapse in osteonecrosis of the femoral head. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2012;34(4):330–336. doi: 10.3881/j.issn.1000-503X.2012.04.004
  44. Aruwajoye OO, Aswath PB, Kim HKW. Material properties of bone in the femoral head treated with ibandronate and BMP-2 following ischemic osteonecrosis. J Orthop Res. 2017;35(7):1453–1460. doi: 10.1002/jor.23402
  45. Little DG, Kim HK. Potential for bisphosphonate treatment in Legg-Calve-Perthes disease. J Pediatr Orthop. 2011;31(2):S182–S188. doi: 10.1097/BPO.0b013e318223b541
  46. Bradley J. Rabquer, Giselle J. Tan, et al. Synovial inflammation in patients with osteonecrosis of the femoral head. Clin Transl Sci. 2009;2(4):273–278. doi: 10.1111/j.1752-8062.2009.00133.x
  47. Barsukov DB, Kamosko MM. Pelvic osteotomy in the complex treatment of children with Legg-Calve-Perthes disease. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2014;2(2):29–37. (In Russ.) doi: 10.17816/PTORS2229-37
  48. Tuktiyeva N, Dossanov B, Sakalouski A, et al. Methods of treatment of Legg-Calvé-Perthes disease (review). Georgian Med News. 2021;313:127–134.
  49. Jamil K, Zacharin M, Foster B, et al. Protocol for a randomised control trial of bisphosphonate (zoledronic acid) treatment in childhood femoral head avascular necrosis due to Perthes disease. BMJ Paediatr Open. 2017;1(1). doi: 10.1136/bmjpo-2017-000084
  50. Huang ZQ, Fu FY, Li WL, et al. Current treatment modalities for osteonecrosis of femoral head in mainland china: a cross-sectional study. Orthop Surg. 2020;12(6):1776–1783. doi: 10.1111/os.12810
  51. Kraus R, Laxer RM. Characteristics, treatment options, and outcomes of chronic non-bacterial osteomyelitis in children. Curr Treat Options in Rheum. 2020;6:205–222. doi: 10.1007/s40674-020-00149-8
  52. Hospach T, Langendoerfer M, von Kalle T, et al. Spinal involvement in chronic recurrent multifocal osteomyelitis (CRMO) in childhood and effect of pamidronate. Eur J Pediatr. 2010;169(9):1105–1111. doi: 10.1007/s00431-010-1188-5

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Magnetic resonance imaging shows the initial stage of ANFH (from the author’s archive). A magnetic resonance imaging scan reveals osteonecrosis of the femoral head on the right, massive trabecular edema, as well as pronounced symptoms of synovitis with overstretching of the joint capsule

下载 (83KB)
3. Fig. 2. Scheme of osteoclast activation in the focus of osteonecrosis (from the author’s archive). Explanation is presented in the text. RANK, cellular receptor activator; RANKL, receptor ligand; IL-6, interleukin-6; IL-1, interleukin-1, TNF-α, tumor necrosis factor alpha

下载 (207KB)
4. Fig. 3. Magnetic resonance imaging shows stage 2 of osteochondropathy of the femoral head on the left with signs of osteoarthritis (from the author’s archive). Magnetic resonance imaging in T2 STIR modes reveals an extensive area of femoral head destruction, signs of trabecular edema, and chronic synovitis

下载 (101KB)
5. Fig. 4. A series of magnetic resonance imaging in pediatric patients with LCPD with signs of osteoarthritis: (a, b) without subluxation in the affected joint; (c, d) with subluxation of the femoral head (from the author’s archive)

下载 (281KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».