Features of the state of bone tissue in children with cerebral palsy. Part 1. Etiological aspects. A literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The growth of the human body is the most significant period of development of the bone tissue, because it is during this period that the size, shape, and architectonics of bone are formed against the background of increasing body weight and increasing physical exertion. Considering a number of pathological factors of the underlying disease (alimentary, neurological, hormonal, stress, and physical), bone tissue in children with cerebral palsy grows and develops with deviations from the norm.

АIM: To present up-to-date generalized information about the features of bone tissue in children with cerebral palsy to orthopedic traumatologists, neurologists, and physical therapy specialists.

MATERIALS AND METHODS: Studies on the problem of bone tissue condition in patients with cerebral palsy were analyzed. Data published over the past 20 years were searched in the scientific databases PubMed, Google Scholar, Cochrane Library, Crossref, and eLibrary without language restrictions.

RESULTS: In the last 20 years, the number of studies about pediatric osteoporosis has increased. The gold standard for determining the level of bone mineral density is dual-energy X-ray absorptiometry. However, its use in children has presented some difficulties and limitations. In children, the relationship between bone mineral density values and the risk of fractures has not been well studied, which does not allow us to discuss about osteoporosis based on densitometric bone mineral density data alone. In patients with cerebral palsy, a decrease in bone mineral density and bone mass during growth was found. Previous studies showed that the main factors associated with a decrease in bone mineral density in this group of patients include neuroendocrine causes due to growth retardation against the background of CNS damage, alimentary factors, decreased calcium and vitamin D concentrations, systemic use of glucocorticoids, intake of antiepileptic drugs, decreased motor activity, and low muscle mass. Increasing serum vitamin D concentrations does not have a positive effect on bone mass, although increasing serum calcium concentrations is associated with an increase in bone mineral density.

CONCLUSIONS: Identifying and correcting factors leading to decreased bone mineral density in children with cerebral palsy can improve bone health in this group of patients. The absence of a relationship between bone mineral density values and the risk of fractures in children with cerebral palsy does not allow us to discuss about osteoporosis based only on bone mineral density densitometric data. There may be more factors leading to an increased risk of bone fractures in children with cerebral palsy that require further study.

About the authors

Vladimir A. Novikov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Valery V. Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853

MD, PhD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Dmitry S. Zharkov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: striker5621@gmail.com
ORCID iD: 0000-0002-8027-1593

MD

Russian Federation, Saint Petersburg

Dmitry V. Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN-code: 1376-7998

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Alina R. Mustafaeva

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: alina.mys23@yandex.ru
ORCID iD: 0009-0003-4108-7317

PhD student

Russian Federation, Saint Petersburg

Olga V. Barlova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: barlovaolga@gmail.com
ORCID iD: 0000-0002-0184-135X

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2. doi: 10.1038/nrdp.2015.82
  2. Samusev RP, Zubareva EV, Rudaskova ES. Age morphology. Volgograd: VGAFK, 2016. 320 p. (In Russ.) EDN: XYHNWP
  3. Heaney RP, Abrams S, Dawson-Hughes B, et al. Peak bone mass. Osteoporos Int. 2000;11(12):985–1009. doi: 10.1007/s001980070020
  4. Bachrach LK. Consensus and controversy regarding osteoporosis in the pediatric population. Endocr Pract. 2007;13(5):513–520. doi: 10.4158/EP.13.5.513
  5. Weber DR, Boyce A, Gordon C, et al. The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom. 2019;22(4):567–589. doi: 10.1016/j.jocd.2019.07.002
  6. Ward LM, Weber DR, Munns CF, et al. A contemporary view of the definition and diagnosis of osteoporosis in children and adolescents. J Clin Endocrinol Metab. 2020;105(5):e2088–e2097. doi: 10.1210/clinem/dgz294
  7. Writing Group for the ISCD Position Development Conference. Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitom. 2004;7(1):17–26. doi: 10.1385/jcd:7:1:17
  8. Kalkwarf HJ, Zemel BS, Gilsanz V, et al. The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92(6):2087–2099. doi: 10.1210/jc.2006-2553
  9. Ward KA, Ashby R, Roberts SA, et al. UK reference data for the Hologic QDR Discovery dual energy x-ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child. 2007;92(1):53–59. doi: 10.1136/adc.2006.097642
  10. Crabtree NJ, Kibirige MS, Fordham JN, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone. 2004;35(4):965–972. doi: 10.1016/j.bone.2004.06.009
  11. Horlick M, Wang J, Pierson RN, et al. Prediction models for evaluation of total-body bone mass with dualenergy x-ray absorptiometry among children and adolescents. Pediatrics. 2004;114(3):337–345. doi: 10.1542/peds.2004-0301
  12. Zanchetta JR, Plotkin H, Alvarez Filgueira ML. Bone mass in children: normative values for the 2-20-year-old population. Bone. 1995;16(4):393S–399S. doi: 10.1016/8756-3282(95)00082-o
  13. Leonard MB, Propert KJ, Zemel BS, et al. Discrepancies in pediatric bone mineral density reference data; potential for misdiagnosis of osteopenia. J Pediatr. 1999;135(2):182–188. doi: 10.1016/s0022-3476(99)70020-x
  14. Bachrach LK. Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol Metab Clin N Amer. 2005;34(3):521–535. doi: 10.1016/j.ecl.2005.04.001
  15. Specker BL, Schoenau E. Quantitative bone analysis in children: current methods and recommendations. J Pediatr. 2005;146(6):726–731. doi: 10.1016/j.jpeds.2005.02.002
  16. Fewtrell MS, Gordon I, Biassoni L, et al. Dual x-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone. 2005;37(3):413–419. doi: 10.1016/j.bone.2005.04.028
  17. Lewiecki EM, Gordon CM, Baim S, et al. Special report on the 2007 adult and pediatric Position Development Conferences of the International Society for Clinical Densitometry. Osteoporos Int. 2008;19(10):1369–1378. doi: 10.1007/s00198-008-0689-9
  18. Kanis JA, Oden A, Johnell O, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18(8):1033–1046. doi: 10.1007/s00198-007-0343-y
  19. Miller PD. Bone density and markers of bone turnover in predicting fracture risk and how changes in these measures predict fracture risk reduction. Curr Osteoporos Rep. 2005;3(3):103–110. doi: 10.1007/s11914-005-0018-6
  20. Bonnick SL, Shulman L. Monitoring osteoporosis therapy: bone mineral density, bone turnover markers, or both? Am J Med. 2006;119(4):S25–S31. doi: 10.1016/j.amjmed.2005.12.020
  21. Schonau E, Rauch F. Markers of bone and collagen metabolism–problems and perspectives in paediatrics. Horm Res. 1997;48(5):50–59. doi: 10.1159/000191329
  22. Rauchenzauner M, Schmid A, Heinz-Erian P, et al. Sexand age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–449. doi: 10.1210/jc.2006-1706
  23. Mora S, Pitukcheewanont P, Kaufman FR, et al. Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res. 1999;14(10):1664–1671. doi: 10.1359/jbmr.1999.14.10.1664
  24. Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporos Int. 1994;4(6):382–398. doi: 10.1007/BF01622201
  25. Kaladze NN, Ursina EO. Characteristics of the structural-functional state of bone tissue and mineral exchange in children, patients with cerebral paralysis. Herald of physiotherapy and health resort therapy. 2017;23(3):50–57. EDN: NRFDXN
  26. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–615. doi: 10.1016/j.bone.2007.12.224
  27. Johnson DL, Miller F, Subramanian P, et al. Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr. 2009;154(5):715–720. doi: 10.1016/j.jpeds.2008.10.046
  28. Fung EB, Samson-Fang L, Stallings VA, et al. Feeding dysfunction is associated with poor growth and health status in children with cerebral palsy. J Am Diet Assoc. 2002;102(3):361–373. doi: 10.1016/s0002-8223(02)90084-2
  29. Herrera-Anaya E, Angarita-Fonseca A, Herrera-Galindo VM, et al. Association between gross motor function and nutritional status in children with cerebral palsy: a cross-sectional study from Colombia. Dev Med Child Neurol. 2016;58(9):936–941. doi: 10.1111/dmcn.13108
  30. Henderson RC, Lin PP, Greene WB. Bone-mineral density in children and adolescents who have spastic cerebral palsy. J Bone Joint Surg Am. 1995;77(11):1671–1681. doi: 10.2106/00004623-199511000-00005
  31. Tai V, Leung W, Grey A, et al. Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ. 2015;35. doi: 10.1136/bmj.h4183
  32. Manohar S, Gangadaran RP. Vitamin D status in children with cerebral palsy. Int. J Contemp Pediatr. 2017;4:615. doi: 10.18203/2349-3291.ijcp20170719
  33. Seth A, Aneja S, Singh R, et al. Effect of impaired ambulation and anti-epileptic drug intake on vitamin D status of children with cerebral palsy. Paediatr Int Child Health. 2017;37(3):193–198. doi: 10.1080/20469047.2016.1266116
  34. Toopchizadeh V, Barzegar M, Masoumi S, et al. Prevalence of vitamin D deficiency and associated risk factors in cerebral palsy a study in North-West of Iran. Iran J Child Neurol. 2018;12(2):25–32.
  35. Akpinar P. Vitamin D status of children with cerebral palsy: Should vitamin D levels be checked in children with cerebral palsy? North Clin Istanb. 2018;5(4):341–347. doi: 10.14744/nci.2017.09581
  36. Le Roy C, Barja S, Sepúlveda C, et al. Vitamin D and iron deficiencies in children and adolescents with cerebral palsy. Deficiencia de vitamina D y de hierro en niños y adolescentes con parálisis cerebral. Neurologia (Engl Ed). 2021;36(2):112–118. doi: 10.1016/j.nrl.2017.11.005
  37. Leonard M, Dain E, Pelc K, et al. Nutritional status of neurologically impaired children: Impact on comorbidity. Arch Pediatr. 2020;27(2):95–103. doi: 10.1016/j.arcped.2019.11.003
  38. Jekovec-Vrhovsek M, Kocijancic A, Prezelj J. Effect of vitamin D and calcium on bone mineral density in children with CP and epilepsy in full-time care. Dev Med Child Neurol. 2000;42(6):403–405.
  39. Tosun A, Erisen Karaca S, Unuvar T, et al. Bone mineral density and vitamin D status in children with epilepsy, cerebral palsy, and cerebral palsy with epilepsy. Childs Nerv Syst. 2017;33(1):153–158. doi: 10.1007/s00381-016-3258-0
  40. Newberry SJ, Chung M, Shekelle PG, et al. Vitamin D and calcium: a systematic review of health outcomes (update). Evid Rep Technol Assess (Full Rep). 2014;(217):1–929. doi: 10.23970/AHRQEPCERTA217
  41. Chung M, Balk EM, Brendel M, et al. Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess (Full Rep). 2009;(183):1–420.
  42. Nazif H, Shatla R, Elsayed R, et al. Bone mineral density and insulin-like growth factor-1 in children with spastic cerebral palsy. Childs Nerv Syst. 2017;33(4):625–630. doi: 10.1007/s00381-017-3346-9.
  43. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61(1):7–16. doi: 10.1007/s12020-018-1588-2
  44. Ito T, Jensen RT. Association of long-term proton pump inhibitor therapy with bone fractures and effects on absorption of calcium, vitamin B12, iron, and magnesium. Curr Gastroenterol Rep. 2010;12(6):448–457. doi: 10.1007/s11894-010-0141-0
  45. Pack AM. Genetic variation may clarify the relationship between epilepsy, antiepileptic drugs, and bone health. Eur J Neurol. 2011;18(1):3–4. doi: 10.1111/j.1468-1331.2010.03137.x
  46. Anwar MdJ, Radhakrishna KV, Vohora D. Phenytoin and sodium valproate but not levetiracetam induce bone alterations in female mice. Can J Physiol Pharmacol. 2014;92(6):507–511. doi: 10.1139/cjpp-2013-0504
  47. Vestergaard P. Effects of antiepileptic drugs on bone health and growth potential in children with epilepsy. Paediatr Drugs. 2015;17(2):141–150. doi: 10.1007/s40272-014-0115-z
  48. Granild-Jensen JB, Pedersen AB, Kristiansen EB, et al. Fracture rates in children with cerebral palsy: a Danish, nationwide register-based study. Clin Epidemiol. 2022;14:1405–1414. doi: 10.2147/CLEP.S381343
  49. Linton G, Hägglund G, Czuba T, et al. Epidemiology of fractures in children with cerebral palsy: a Swedish population-based registry study. BMC Musculoskelet Disord. 2022;23(1):862. doi: 10.1186/s12891-022-05813-9
  50. Wort UU, Nordmark E, Wagner P, et el. Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol. 2013;55(9):821–826. doi: 10.1111/dmcn.12178
  51. Modlesky CM, Subramanian P, Miller F. Underdeveloped trabecular bone microarchitecture is detected in children with cerebral palsy using high-resolution magnetic resonance imaging. Osteoporosis Int. 2008;19(2):169–176. doi: 10.1007/s00198-007-0433-x
  52. Krick J, Murphymiller P, Zeger S, et el. Pattern of growth in children with cerebral palsy. J Am Diet Assoc. 1996;96(7):680–685. doi: 10.1016/s0002-8223(96)00188-5
  53. Manske SL, Lorincz CR, Zernicke RF. Bone health: part 2, physical activity. Sports Health. 2009;1(4):341–346. doi: 10.1177/1941738109338823
  54. Iwamoto J. A role of exercise and sports in the prevention of osteoporosis. Clin Calcium. 2017;27(1):17–23.
  55. Henderson RC, Lark RK, Gurka MJ, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1):5. doi: 10.1542/peds.110.1.e5
  56. Whitney DG, Hurvitz EA, Caird MS. Critical periods of bone health across the lifespan for individuals with cerebral palsy: Informing clinical guidelines for fracture prevention and monitoring. Bone. 2021;150. doi: 10.1016/j.bone.2021.116009
  57. Modlesky CM, Kanoff SA, Johnson DL, et al. Evaluation of the femoral midshaft in children with cerebral palsy using magnetic resonance imaging. Osteoporosis Int. 2009;20(4):609–615. doi: 10.1007/s00198-008-0718-8
  58. Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12(10):1539–1546. doi: 10.1359/jbmr.1997.12.10.1539
  59. Bajaj D, Allerton BM, Kirby JT, et al. Muscle volume is related to trabecular and cortical bone architecture in typically developing children. Bone. 2015;81:217–227. doi: 10.1016/j.bone.2015.07.014
  60. Lebrasseur NK, Achenbach SJ, Melton LJ 3rd, et al. Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res. 2012;27(10):2159–2169. doi: 10.1002/jbmr.1666
  61. Schoenau E, Neu CM, Mokov E, et al. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab. 2000;85(3):1095–1098. doi: 10.1210/jcem.85.3.6451
  62. Noble JJ, Fry N, Lewis AP, et al. Bone strength is related to muscle volume in ambulant individuals with bilateral spastic cerebral palsy. Bone. 2014;66:251–255. doi: 10.1016/j.bone.2014.06.028
  63. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2014;45(2):165–177. doi: 10.1007/s12020-013-0026-8
  64. Modlesky CM, Cavaiola ML, Smith JJ, et al. A DXA-based mathematical model predicts midthigh muscle mass from magnetic resonance imaging in typically developing children but not in those with quadriplegic cerebral palsy. J Nutr. 2010;140(12):2260–2265. doi: 10.3945/jn.110.126219
  65. Whitney DG, Singh H, Miller F, et al. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. Bone. 2017;94:90–97. doi: 10.1016/j.bone.2016.10.005
  66. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553
  67. Chu MP, Alagiakrishnan K, Sadowski C. The cure of ageing: vitamin D – magic or myth? Postgrad Med J. 2010;86(1020):608–616. doi: 10.1136/pgmj.2010.101121
  68. Gariballa S, Yasin J, Alessa A. A randomized, double-blind, placebo-controlled trial of vitamin D supplementation with or without calcium in community-dwelling vitamin D deficient subjects. BMC Musculoskelet Disord. 2022;23(1):415. doi: 10.1186/s12891-022-05364-z
  69. Leonard MB, Shults J, Wilson BA, et al. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr. 2004;80(2):514–523. doi: 10.1093/ajcn/80.2.514

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».