Diagnostic and prognostic value of biomarkers in atopic dermatitis for assessing its endotypes, phenotypes, and treatment efficacy
- Authors: Elisyutina O.G.1, Fedenko E.S.1, Smolnikov E.V.1,2, Ignatyeva O.A.2, Khaitov M.R.1,2,3
-
Affiliations:
- National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
- Peoples' Friendship University of Russia
- The Russian National Research Medical University named after N.I. Pirogov
- Issue: Vol 20, No 4 (2023)
- Pages: 521-542
- Section: Reviews
- URL: https://bakhtiniada.ru/raj/article/view/253270
- DOI: https://doi.org/10.36691/RJA16905
- ID: 253270
Cite item
Abstract
Atopic dermatitis is a highly heterogeneous disease that usually requires a tailored approach to therapy. Recent studies have described a variety of biomarkers linked to diverse pathophysiological aspects of atopic dermatitis. Furthermore, they have provided encouraging evidence supporting high clinical importance of these biomarkers as promising tools for personalized diagnosis, assessment of disease severity, and monitoring of treatment efficacy. This review aims to provide a comprehensive summary of research progress on atopic dermatitis biomarkers, their diagnostic and prognostic value, as well as the benefits they might potentially offer not only for determining the disease endotype, but also for developing novel management strategies. The implementation of easily accessible and simple methods to measure atopic dermatitis biomarkers into clinical practice is an ambitious task for allergologists and dermatologists. A detailed overview of currently available data will allow us to identify the most important trajectories for future research in this area that will promote the concept of personalized atopic dermatitis therapy, reduce the disease burden, and improve the quality of life of patients.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Olga G. Elisyutina
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-code: 9567-1894
MD, Dr. Sci.(Med.)
Russian Federation, MoscowElena S. Fedenko
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: efedks@gmail.com
ORCID iD: 0000-0003-3358-5087
SPIN-code: 5012-7242
MD, Dr. Sci.(Med.), Professor
Russian Federation, MoscowEugeniy V. Smolnikov
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia; Peoples' Friendship University of Russia
Email: qwertil2010@yandex.ru
ORCID iD: 0000-0003-1302-4178
SPIN-code: 4874-8100
Russian Federation, Moscow; Moscow
Olga A. Ignatyeva
Peoples' Friendship University of Russia
Email: ignatyevaolga@rambler.ru
ORCID iD: 0000-0003-2020-4206
SPIN-code: 1817-9028
Cand. Sci. (Biol.)
Russian Federation, MoscowMusa R. Khaitov
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia; Peoples' Friendship University of Russia; The Russian National Research Medical University named after N.I. Pirogov
Author for correspondence.
Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-code: 3199-9803
MD, Dr. Sci. (Med.), Professor, Corresponding member of the Russian Academy of Sciences
Russian Federation, Moscow; Moscow; MoscowReferences
- Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109–1122. doi: 10.1016/S0140-6736(15)00149-X
- Kubanov AA, Namazova-Baranova LS, Khaitov RM, et al. Atopic dermatitis. Russ Allergol J. 2021;18(3):44–92. doi: 10.36691/RJA1474
- Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy. 2018;73(6):1284–1293. doi: 10.1111/all.13401
- Megna M, Patruno C, Balato A, et al. An Italian multicentre study on adult atopic dermatitis: Persistent versus adult-onset disease. Arch Dermatol Res. 2017;309(6):443–452. doi: 10.1007/s00403-017-1739-y
- Oliveira C, Torres T. More than skin deep: The systemic nature of atopic dermatitis. Eur J Dermatol. 2019;29(3):250–258. doi: 10.1684/ejd.2019.3557
- Renert-Yuval Y, Guttman-Yassky E. What's new in atopic dermatitis. Dermatol Clin. 2019;37(2):205–213. doi: 10.1016/j.det.2018.12.007
- Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29–40. doi: 10.1016/j.immuni.2015.07.007
- Gittler JK, Shemer A, Suárez-Fariñas M, et al. Progressive activation of T(h)2/T(h)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–1354. doi: 10.1016/j.jaci.2012.07.012
- Gandhi NA, Bennett BL, Graham NM, et al. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. 2016;15(1):35–50. doi: 10.1038/nrd4624
- Sims JT, Chang CY, Higgs RE, et al. Insights into adult atopic dermatitis heterogeneity derived from circulating biomarker profiling in patients with moderate-to-severe disease. Exp Dermatol. 2021;30(11):1650–1661. doi: 10.1111/exd.14389
- Gewiss C, Augustin M. Recent insights into comorbidities in atopic dermatitis. Expert Rev Clin Immunol. 2023;19(4):393–404. doi: 10.1080/1744666X.2023.2181790
- Beck LA, Cork MJ, Amagai M, et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis. JID Innov. 2022;2(5):100131. doi: 10.1016/j.xjidi.2022.100131
- Itamura MY. Involvement of atopic dermatitis in the development of systemic inflammatory diseases. Int J Mol Sci. 2022;23(21):13445. doi: 10.3390/ijms232113445
- Wollenberg A, Kinberger M, Arents B, et al. European guideline (EuroGuiDerm) on atopic eczema, part I. Systemic therapy. J Eur Acad Dermatol Venereol. 2022;36(9):1409–1431. doi: 10.1111/jdv.18345
- Wollenberg A, Kinberger M, Arents B, et al. European guideline (EuroGuiDerm) on atopic eczema, part II: Non-systemic treatments and treatment recommendations for special AE patient populations. J Eur Acad Dermatol Venereol. 2022;36(11):1904–1926. doi: 10.1111/jdv.18429
- Simpson EL, Bieber T, Guttman-Yassky E, et al. Two Phase 3 Trials of dupilumab versus placebo in atopic dermatitis. New Engl J Med. 2016;375(24):2335–2348. doi: 10.1056/NEJMoa1610020
- Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): A 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–2303. doi: 10.1016/S0140-6736(17)31191-1
- De Bruin-Weller M, Thaçi D, Smith CH, et al. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inadvisable: A placebo-controlled, randomized phase III clinical trial (LIBERTY AD CAFÉ). Brit J Dermatol. 2018;178(5):1083–1101. doi: 10.1111/bjd.16156
- Thaçi D, Simpson LE, Deleuran M, et al. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: A pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2). J Dermatol Sci. 2019;94(2):266–275. doi: 10.1016/j.jdermsci.2019.02.002
- Cork MJ, Eckert L, Simpson EL, et al. Dupilumab improves patient-reported symptoms of atopic dermatitis, symptoms of anxiety and depression, and health-related quality of life in moderate-to-severe atopic dermatitis: Analysis of pooled data from the randomized trials SOLO 1 and SOLO 2. J Dermatol Treat. 2020;31(6):606–614. doi: 10.1080/09546634.2019.1612836
- Reich K, Teixeira HD, de Bruin-Weller M, et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): Results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021;397(10290):2169–2181. doi: 10.1016/S0140-6736(21)00589-4
- Reich K, Teixeira HD, de Bruin-Weller M, et al. Upadacitinib plus topical corticosteroids in atopic dermatitis: Week 52 AD Up study results. J Allergy Clin Immunol. 2022;149(3):977–987.e14. doi: 10.1016/j.jaci.2021.07.036
- Simpson EL, Sinclair R, Forman S, et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet. 2020;396(10246):255–266. doi: 10.1016/S0140-6736(20)30732-7
- Silverberg JI, Simpson EL, Thyssen JP, et al. Efficacy and safety of abrocitinib in patients with moderate-to-severe atopic dermatitis: A randomized clinical trial. JAMA Dermatol. 2020;156(8):863–873. doi: 10.1001/jamadermatol.2020.1406
- Bieber T, Simpson EL, Silverberg JI, et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis. New Engl J Med. 2021;384(12):1101–1112. doi: 10.1056/NEJMoa2019380
- Eczemacouncil.org [Internet]. Chicago: International Eczema Council, Inc. Available from: https://www.eczemacouncil.org/. Accessed: 15.11.2023.
- Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm Venereol. 1980;60(Suppl 92):44–47. doi: 10.2340/00015555924447
- Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49(12):1752–1757. doi: 10.1038/ng.3985
- Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–446. doi: 10.1038/ng1767
- Ruether A, Stoll M, Schwarz T, et al. Filaggrin loss-of-function variant contributes to atopic dermatitis risk in the population of Northern Germany. Brit J Dermatol. 2006;155(5):1093–1094. doi: 10.1111/j.1365-2133.2006.07500.x
- Irvine AD, McLean WH, Leung DY, et al. Filaggrin mutations associated with skin and allergic diseases. New Engl J Med. 2011;365(14):1315–1327. doi: 10.1056/NEJMra1011040
- Stefansson K, Brattsand M, Roosterman D, et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol. 2008;128(1):18–25. doi: 10.1038/sj.jid.5700965
- Vasilopoulos Y, Cork MJ, Teare D, et al. A nonsynonymous substitution of cystatin A, a cysteine protease inhibitor of house dust mite protease, leads to decreased mRNA stability and shows a significant association with atopic dermatitis. Allergy. 2007;62(5):514–519. doi: 10.1111/j.1398-9995.2007.01350.x
- Elias PM, Eichenfield LF, Fowler JF, et al. Update on the structure and function of the skin barrier: Atopic dermatitis as an exemplar of clinical implications. Semin Cutan Med Surg. 2013;32(Suppl 2):S21–24. doi: 10.12788/j.sder.0022
- Hershey GK, Friedrich MF, Esswein LA, et al. The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. New Engl J Med. 1997;337(24):1720–1725. doi: 10.1056/NEJM199712113372403
- Novak N, Kruse S, Potreck J, et al. Single nucleotide polymorphisms of the IL-18 gene are associated with atopic eczema. J Allergy Clin Immunol. 2005;115(4):828–833. doi: 10.1016/j.jaci.2005.01.030
- Stephan W, Christian G, Elke R, et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet. 2008;4(8):e1000166. doi: 10.1371/journal.pgeN1000166
- Zhou J, Zhou Y, Lin LH, et al. Association of polymorphisms in the promoter region of FCER1A gene with atopic dermatitis, chronic urticaria, asthma, and serum immunoglobulin E levels in a Han Chinese population. Hum Immunol. 2012;73(3):301–305. doi: 10.1016/j.humimm.2011.12.001
- Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol. 2004;113(3):565–567. doi: 10.1016/j.jaci.2003.12.583
- Novak N, Yu CF, Bussmann C, et al. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy. 2007;62(7):766–772. doi: 10.1111/j.1398-9995.2007.01358.x
- He H, Bissonnette R, Wu J, et al. Tape strips detect distinct immune and barrier profiles in atopic dermatitis and psoriasis. J Allergy Clin Immunol. 2021;147(1):199–212. doi: 10.1016/j.jaci.2020.05.048
- Reginald K, Westritschnig K, Werfel T, et al. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients. Clin Exp Allergy. 2011;41(3):357–369. doi: 10.1111/j.1365-2222.2010.03655.x
- Reginald K, Westritschnig K, Werfel T, et al. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25(1):106–141. doi: 10.1128/CMR.00021-11
- Benet M, Albang R, Pinart M, et al. Integrating clinical and epidemiologic data on allergic diseases across birth cohorts: A harmonization study in the mechanisms of the development of allergy project. Am J Epidemiol. 2019;188(2):408–417. doi: 10.1093/aje/kwy242
- Kjaer HF, Eller E, Andersen KE, et al. The association between early sensitization patterns and subsequent allergic disease. The DARC birth cohort study. Pediatr Allergy Immunol. 2009;20(8):726–734. doi: 10.1111/j.1399-3038.2009.00862.x
- Eller E, Kjaer HF, Høst A, et al. Food allergy and food sensitization in early childhood: Results from the DARC cohort. Allergy. 2009;64(7):1023–1029. doi: 10.1111/j.1398-9995.2009.01952.x
- González-Pérez R, Poza-Guedes P, Pineda F, et al. House dust mite Precision Allergy Molecular Diagnosis (PAMD) in the Th2-prone atopic dermatitis endotype. Life (Basel, Switzerland). 2021;11(12):1418. doi: 10.3390/life11121418
- Broeks SA, Brand PL. Atopic dermatitis is associated with a fivefold increased risk of polysensitisation in children. Acta Paediat. 2017;106(3):485–488. doi: 10.1111/apa.13729
- Shtyrbul OV. Significance of molecular allergodiagnostics in personalised management of patients with atopic dermatitis: 14.03.09: 14.01.10; place of defence: State Scientific Centre "Institute of Immunology" [dissertation abstract]. Moscow; 2020. 24 р. (In Russ).
- Elisyutina OG, Fedenko ES, Smolnikov EV, et al. Significance of component allergodiagnostics in determining indications for allergen-specific immunotherapy in patients with atopic dermatitis. Russ J Allergol. 2022;19(4):519–533. doi: 10.36691/RJA1588
- Roesner LM, Werfel T. Autoimmunity (or Not) in Atopic Dermatitis. Fron Immunol. 2019;10:2128. doi: 10.3389/fimmu.2019.02128
- Futamura K, Matsumoto K. Epicutaneous sensitization in patients with atopic dermatitis. Pediatr Allergy Immunol Pulmonol. 2016;29(4):170–173. doi: 10.1089/ped.2016.0716
- Kubo A, Nagao K, Amagai M, et al. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122(2):440–447. doi: 10.1172/JCI57416
- Wassmann-Otto A, Heratizadeh A, Wichmann K, et al. Birch pollen-related foods can cause late eczematous reactions in patients with atopic dermatitis. Allergy. 2018;73(10):2046–2054. doi: 10.1111/all.13454
- Fölster-Holst R, Galecka J, Weißmantel S, et al. Birch pollen influence the severity of atopic eczema: Prospective clinical cohort pilot study and ex vivo penetration study. Clin Cosmet Investig Dermatol. 2015;29(8):539–548. doi: 10.2147/CCID.S81700
- Shershakova N, Bashkatova E, Babakhin A, et al. Allergen-specific immunotherapy with monomeric allergoid in a mouse model of atopic dermatitis. PLoS One. 2015;10(8):e0135070. doi: 10.1371/journal.pone.0135070
- Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336–349. doi: 10.1016/j.jaci.2016.06.010
- Heratizadeh A. Atopic dermatitis: New evidence on the role of allergic inflammation. Curr Opin Allergy Clin Immunol. 2016;16(5):458–464. doi: 10.1097/ACI.0000000000000308
- Fadadu RP, Abuabara K, Balmes JR, et al. Air pollution and atopic dermatitis, from molecular mechanisms to population-level evidence: A review. Int J Environ Res Public Health. 2023;20(3):2526. doi: 10.3390/ijerph20032526
- Kim YM, Kim J, Han Y, et al. Short-term effects of weather and air pollution on atopic dermatitis symptoms in children: A panel study in Korea. PLoS One. 2017;12(4):e0175229. doi: 10.1371/journal.pone.0175229
- Sargen MR, Hoffstad O, Margolis DJ. Warm, humid, and high sun exposure climates are associated with poorly controlled eczema: PEER (Pediatric Eczema Elective Registry) cohort, 2004–2012. J Invest Dermatol. 2014;134(1):51–57. doi: 10.1038/jid.2013.274
- Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in the United States. J Invest Dermatol. 2013;133(7):1752–1759. doi: 10.1038/jid.2013.19
- Hankinson O. The aryl hydrocarbon receptor complex. Ann Rev Pharmacol Toxicol. 1995;(35):307–340. doi: 10.1146/annurev.pa.35.040195.001515
- Murota H, Izumi M, Abd El-Latif MI, et al. Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis. J Allergy Clin Immunol. 2012;130(3):671–682. doi: 10.1016/j.jaci.2012.05.027
- Hidaka T, Ogawa E, Kobayashi EH, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18(1):64–73. doi: 10.1038/ni.3614
- Afaq F, Zaid MA, Pelle E, et al. Aryl hydrocarbon receptor is an ozone sensor in human skin. J Invest Dermatol. 2009;129(10):2396–2403. doi: 10.1038/jid.2009.85
- Vogeley C, Kress S, Lang D, et al. A gene variant of AKR1C3 contributes to interindividual susceptibilities to atopic dermatitis triggered by particulate air pollution. Allergy. 2023;78(5):1372–1375. doi: 10.1111/all.15622
- Niwa Y, Sumi H, Kawahira K, et al. Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Brit J Dermatol. 2003;149(2):248–254. doi: 10.1046/j.1365-2133.2003.05417.x
- Schnass W, Hüls A, Vierkötter A, et al. Traffic-related air pollution and eczema in the elderly: Findings from the SALIA cohort. Int J Hygiene Environ Health. 2018;221(6):861–867. doi: 10.1016/j.ijheh.2018.06.002
- Krämer U, Sugiri D, Ranft U, et al. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. J Dermatol Sci. 2009;56(2):99–105. doi: 10.1016/j.jdermsci.2009.07.014
- Aguilera I, Pedersen M, Garcia-Esteban R, et al. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect. 2013;121(3):387–392. doi: 10.1289/ehp.1205281
- Asher MI, Stewart AW, Mallol J, et al. Which population level environmental factors are associated with asthma, rhinoconjunctivitis and eczema? Review of the ecological analyses of ISAAC Phase One. Respirat Res. 2010;11(1):8. doi: 10.1186/1465-9921-11-8
- Lehmann I, Rehwagen M, Diez U, et al. Enhanced in vivo IgE production and T cell polarization toward the type 2 phenotype in association with indoor exposure to VOC: Results of the LARS study. Int J Hyg Environ Health. 2001;204(4):211–221. doi: 10.1078/1438-4639-00100
- Lehmann I, Thoelke A, Rehwagen M, et al. The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells. Environ Toxicol. 2002;17(3):203–210. doi: 10.1002/tox.10055
- Aslam I, Roeffaers MB. Carbonaceous nanoparticle air pollution: Toxicity and detection in biological samples. Nanomaterials. 2022;12(22):3948. doi: 10.3390/nano12223948
- Busch W, Kühnel D, Schirmer K, et al. Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genom. 2010;11:65. doi: 10.1186/1471-2164-11-65
- Wollenberg A, Christen-Zäch S, Taieb A, et al. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. J Eur Acad Dermatol Venereol. 2020;34(12):2717–2744. doi: 10.1111/jdv.16892
- Hijnen D, Knol EF, Gent YY, et al. CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22. J Invest Dermatol. 2013;133(4):973–979. doi: 10.1038/jid.2012.456
- Czarnowicki T, Gonzalez J, Bonifacio KM, et al. Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis. J Allergy Clin Immunol. 2016;137(1):118–129.e5. doi: 10.1016/j.jaci.2015.08.027
- Hwang ST. Mechanisms of T-cell homing to skin. Adv Dermatol. 2001;(17):211–241.
- Bieber T. The pro- and anti-inflammatory properties of human antigen-presenting cells expressing the high affinity receptor for IgE (Fc epsilon RI). Immunobiology. 2007;212(6):499–503. doi: 10.1016/j.imbio.2007.03.001
- Leyva-Castillo JM, McGurk A, Geha MD. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clin Immunol. 2020;(218):108511. doi: 10.1016/j.clim.2020.108511
- Oetjen LK, Mack MR, Feng J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171(1):217–228.e13. doi: 10.1016/j.cell.2017.08.006
- He H, Del Duca E, Diaz A, et al. Mild atopic dermatitis lacks systemic inflammation and shows reduced nonlesional skin abnormalities. J Allergy Clin Immunol. 2021;147(4):1369–1380. doi: 10.1016/j.jaci.2020.08.041
- Simon D, Aeberhard C, Erdemoglu Y, et al. Th17 cells and tissue remodeling in atopic and contact dermatitis. Allergy. 2014;69(1):125–131. doi: 10.1111/all.12351
- Noda S, Suárez-Fariñas M, Ungar B, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased Th17 polarization. J Allergy Clin Immunol. 2015;136(5):1254–1264. doi: 10.1016/j.jaci.2015.08.015
- Bratton DL, Hamid Q, Boguniewicz M, et al. Granulocyte macrophage colony-stimulating factor contributes to enhanced monocyte survival in chronic atopic dermatitis. J Clin Invest. 1995;95(1):211–218. doi: 10.1172/JCI117642
- Purwar R, Werfel T, Wittmann M, et al. IL-13-stimulated human keratinocytes preferentially attract CD4+CCR4+ T cells: Possible role in atopic dermatitis. J Invest Dermatol. 2006;126(5):1043–1051. doi: 10.1038/sj.jid.5700085
- Simon D, Von Gunten S, Borelli S, et al. The interleukin-13 production by peripheral blood T cells from atopic dermatitis patients does not require CD2 costimulation. Int Arch Allergy Immunol. 2003;132(2):148–155. doi: 10.1159/000073716
- He R, Oyoshi MK, Garibyan L, et al. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc Natl Acad Sci USA. 2008;105(33):11875–11880. doi: 10.1073/pnas.0801532105
- Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–680. doi: 10.1038/ni805
- Souwer Y, Szegedi K, Kapsenberg ML, et al. IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol. 2010;22(6):821–826. doi: 10.1016/j.coi.2010.10.013
- Janssen EM, Dy SM, Meara AS, et al. Intrinsic atopic dermatitis shows similar Th2 and higher Th17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–370. doi: 10.1016/j.jaci.2013.04.046
- Ungar B, Garcet S, Gonzalez J, et al. An integrated model of atopic dermatitis biomarkers highlights the systemic nature of the disease. J Inves Dermatol. 2017;137(3):603–613. doi: 10.1016/j.jid.2016.09.037
- Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2(3):e24137. doi: 10.4161/jkst.24137
- Yoshida T, Beck LA, de Benedetto A. Skin barrier defects in atopic dermatitis: From old idea to new opportunity. Allergol Int. 2022;71(1):3–13. doi: 10.1016/j.alit.2021.11.006
- Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Brit J Dermatol. 1974;90(5):525–530. doi: 10.1111/j.1365-2133.1974.tb06447.x
- Lin YT, Wang CT, Chiang BL, et al. Role of bacterial pathogens in atopic dermatitis. Clin Rev Allergy Immunol. 2007;33(3):167–177. doi: 10.1007/s12016-007-0044-5
- Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi: 10.1038/nature12655
- Byrd AL, Deming C, Cassidy SK, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):4651. doi: 10.1126/scitranslmed.aal4651
- Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92(3):1374–1380. doi: 10.1172/JCI116711
- Miajlovic H, Fallon PG, Irvine AD, et al. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184–1190. doi: 10.1016/j.jaci.2010.09.015
- Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136(11):2192–2200. doi: 10.1016/j.jid.2016.05.127
- Chng KR, Tay AS, Li C, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106. doi: 10.1038/nmicrobiol.2016.106
- Totté JE, van der Feltz WT, Hennekam M, et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Brit J Dermatol. 2016;175(4):687–695. doi: 10.1111/bjd.14566
- Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;(42):1–8. doi: 10.1016/j.coi.2016.05.002
- Glatz M, Bosshard PP, Hoetzenecker W, et al. The role of Malassezia spp. in atopic dermatitis. J Clin Med. 2015;4(6):1217–1228. doi: 10.3390/jcm4061217
- Simpson EL, Villarreal M, Jepson B, et al. Patients with atopic dermatitis colonized with Staphylococcus aureus have a distinct phenotype and endotype. J Invest Dermatol. 2018;138(10):2224–2233. doi: 10.1016/j.jid.2018.03.1517
- Bosma AL, Ascott A, Iskandar R, et al. Classifying atopic dermatitis: A systematic review of phenotypes and associated characteristics. J Eur Acad Dermatol Venereol. 2022;36(6):807–819. doi: 10.1111/jdv.18008
- Elisyutina OG, Litovkina AO, Smolnikov EV, et al. Clinical features of different phenotypes of atopic dermatitis. Russ J Allergol. 2019;16(4):30–41. doi: 10.36691/RAJ.2020.16.4.004
- Eichenfield LF, Tom WL, Chamlin SL, et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J Am Acad Dermatol. 2014;70(2):338–351. doi: 10.1016/j.jaad.2013.10.010
- Shin YH, Hwang J, Kwon R, et al. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Allergy. 2023;78(8):2232–2254. doi: 10.1111/all.15807
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Therapeut. 2001;69(3):89–95. doi: 10.1067/mcp.2001.113989
- Hughes AJ, Tawfik SS, Baruah KP, et al. Tape strips in dermatology research. Brit J Dermatol. 2021;185(1):26–35. doi: 10.1111/bjd.19760
- Renert-Yuval Y, Thyssen JP, Bissonnette R, et al. Biomarkers in atopic dermatitis: A review on behalf of the International Eczema Council. J Allergy Clin Immunol. 2021;147(4):1174–1190. doi: 10.1016/j.jaci.2021.01.013
- Bieber T, d'Erme AM, Akdis CA, et al. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J Allergy Clin Immunol. 2017;139(4S):S58–S64. doi: 10.1016/j.jaci.2017.01.008
- Rosińska-Więckowicz A, Czarnecka-Operacz M, Adamski Z. Selected immunological parameters in clinical evaluation of patients with atopic dermatitis. Postepy Dermatol Alergol. 2016;33(3):211–218. doi: 10.5114/ada.2016.60614
- Yoshizawa Y, Nomaguchi H, Izaki S, et al. Serum cytokine levels in atopic dermatitis. Clin Exp Dermatol. 2002;27(3):225–229. doi: 10.1046/j.1365-2230.2002.00987.x
- Thijs J, Krastev T, Weidinger S, et al. Biomarkers for atopic dermatitis: A systematic review and meta-analysis. Curr Opin Allergy Clin Immunol. 2015;15(5):453–460. doi: 10.1097/ACI.0000000000000198
- Kägi MK, Joller-Jemelka H, Wüthrich B. Correlation of eosinophils, eosinophil cationic protein and soluble interleukin-2 receptor with the clinical activity of atopic dermatitis. Dermatology. 1992;185(2):88–92. doi: 10.1159/000247419
- Ariëns LF, van der Schaft J, Bakker DS, et al. Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients: First clinical and biomarker results from the BioDay registry. Allergy. 2020;75(1):116–126. doi: 10.1111/all.14080
- Koning H, Neijens HJ, Baert MR, et al. T cell subsets and cytokines in allergic and non-allergic children. I. Analysis of IL-4, IFN-gamma and IL-13 mRNA expression and protein production. Cytokine. 1997;9(6):416–426. doi: 10.1006/cyto.1996.0184
- Szegedi K, Lutter R, Res PC, et al. Cytokine profiles in interstitial fluid from chronic atopic dermatitis skin. J Eur Acad Dermatol Venereol. 2015;29(11):2136–2144. doi: 10.1111/jdv.13160
- Sanyal RD, Pavel AB, Glickman J, et al. Atopic dermatitis in African American patients is Th2/Th22-skewed with Th1/Th17 attenuation. Ann Allergy Asthma Immunol. 2019;122(1):99–110. doi: 10.1016/j.anai.2018.08.024
- Leung TF, Ma KC, Hon KL, et al. Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Pediatr Allergy Immunol. 2003;14(4):296–301. doi: 10.1034/j.1399-3038.2003.00052.x
- Hijnen D, De Bruin-Weller M, Oosting B, et al. Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell-attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J Allergy Clin Immunol. 2004;113(2):334–340. doi: 10.1016/j.jaci.2003.12.007
- Furukawa H, Takahashi M, Nakamura K, et al. Effect of an antiallergic drug (Olopatadine hydrochloride) on TARC/CCL17 and MDC/CCL22 production by PBMCs from patients with atopic dermatitis. J Dermatol Sci. 2004;36(3):165–172. doi: 10.1016/j.jdermsci.2004.09.001
- Yasukochi Y, Nakahara T, Abe T, et al. Reduction of serum TARC levels in atopic dermatitis by topical anti-inflammatory treatments. Asian Pac J Allergy Immunol. 2014;32(3):240–245. doi: 10.12932/AP0419.32.3.2014
- Kyoya M, Kawakami T, Soma Y. Serum thymus and activation-regulated chemokine (TARC) and interleukin-31 levels as biomarkers for monitoring in adult atopic dermatitis. J Dermatol Sci. 2014;75(3):204–207. doi: 10.1016/j.jdermsci.2014.06.001
- Gohar MK, Atta AH, Nasr MM, Hussein DN. Serum Thymus and Activation Regulated Chemokine (TARC), IL-18 and IL-18 gene polymorphism as associative factors with atopic dermatitis. Egypt J Immunol. 2017;24(2):9–22.
- Bogaczewicz J, Malinowska K, Sysa-Jedrzejowska A, Wozniacka A. Medium-dose ultraviolet A1 phototherapy and mRNA expression of TSLP, TARC, IL-5, and IL-13 in acute skin lesions in atopic dermatitis. Int J Dermatol. 2016;55(8):856–863. doi: 10.1111/ijd.12992
- Vekaria AS, Brunner PM, Aleisa AI, et al. Moderate-to-severe atopic dermatitis patients show increases in serum C-reactive protein levels, correlating with skin disease activity. F1000Research. 2017;(6):1712. doi: 10.12688/f1000research.12422.2
- Morishima Y, Kawashima H, Takekuma K, Hoshika A. Changes in serum lactate dehydrogenase activity in children with atopic dermatitis. Pediatr Int. 2010;52(2):171–174. doi: 10.1111/j.1442-200X.2009.02908.x
- Kou K, Aihara M, Matsunaga T, et al. Association of serum interleukin-18 and other biomarkers with disease severity in adults with atopic dermatitis. Arch Dermatol Res. 2012;304(4):305–312. doi: 10.1007/s00403-011-1198-9
- Mizawa M, Yamaguchi M, Ueda C, et al. Stress evaluation in adult patients with atopic dermatitis using salivary cortisol. BioMed Res Int. 2013;2013:138027. doi: 10.1155/2013/138027
- Kezic S, O'Regan GM, Lutter R, et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012;129(4):1031–1039. doi: 10.1016/j.jaci.2011.12.989
- Khattri S, Shemer A, Rozenblit M, et al. Cyclosporine in patients with atopic dermatitis modulates activated inflammatory pathways and reverses epidermal pathology. J Allergy Clin Immunol. 2014;133(6):1626–1634. doi: 10.1016/j.jaci.2014.03.003
- Brunner PM, Pavel AB, Khattri S, et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab. J Allergy Clin Immunol. 2019;143(1):142–154. doi: 10.1016/j.jaci.2018.07.028
- Glickman JW, Han J, Garcet S, et al. Improving evaluation of drugs in atopic dermatitis by combining clinical and molecular measures. J Allergy Clin Immunol Pract. 2020;8(10):3622–3625.e19. doi: 10.1016/j.jaip.2020.07.015
- Dyjack N, Goleva E, Rios C, et al. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2-high atopic dermatitis disease endotype. J Allergy Clin Immunol. 2018;141(4):1298–1309. doi: 10.1016/j.jaci.2017.10.046
- Guttman-Yassky E, Diaz A, Pavel AB, et al. Use of tape strips to detect immune and barrier abnormalities in the skin of children with early-onset atopic dermatitis. JAMA Dermatol. 2019;155(12):1358–1370. doi: 10.1001/jamadermatol.2019.2983
Supplementary files
