Диагностическая и прогностическая значимость биомаркеров в определении эндотипов и фенотипов атопического дерматита и оценке эффективности терапии
- Авторы: Елисютина О.Г.1, Феденко Е.С.1, Смольников Е.В.1,2, Игнатьева О.А.2, Хаитов М.Р.1,2,3
-
Учреждения:
- Государственный научный центр «Институт иммунологии»
- Российский университет дружбы народов имени Патриса Лумумбы
- Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
- Выпуск: Том 20, № 4 (2023)
- Страницы: 521-542
- Раздел: Научные обзоры
- URL: https://bakhtiniada.ru/raj/article/view/253270
- DOI: https://doi.org/10.36691/RJA16905
- ID: 253270
Цитировать
Аннотация
Атопический дерматит ― гетерогенное заболевание, требующее индивидуализированного подхода к лечению. Исследования последних лет позволили охарактеризовать множество биомаркеров, отражающих патофизиологические механизмы атопического дерматита, и показали их значимость в качестве инструментов для персонифицированной диагностики, оценки степени тяжести и мониторинга эффективности терапии.
Настоящий обзор посвящён анализу результатов современных исследований биомаркеров атопического дерматита, их клинической значимости и возможным перспективам не только в определении эндофенотипа заболевания, но и в разработке новых терапевтических стратегий.
Внедрение в клиническую практику доступных и простых методов определения биомаркеров является перспективной задачей современной аллергологии и дерматологии. Обобщение современных данных позволит определить приоритетные направления для будущих исследований, которые помогут реализовать концепцию персонализированной терапии атопического дерматита, снизить бремя заболевания и улучшить качество жизни пациентов.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Ольга Гурьевна Елисютина
Государственный научный центр «Институт иммунологии»
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-код: 9567-1894
д-р мед. наук
Россия, МоскваЕлена Сергеевна Феденко
Государственный научный центр «Институт иммунологии»
Email: efedks@gmail.com
ORCID iD: 0000-0003-3358-5087
SPIN-код: 5012-7242
д-р мед. наук, профессор
Россия, МоскваЕвгений Валентинович Смольников
Государственный научный центр «Институт иммунологии»; Российский университет дружбы народов имени Патриса Лумумбы
Email: qwertil2010@yandex.ru
ORCID iD: 0000-0003-1302-4178
SPIN-код: 4874-8100
Россия, Москва; Москва
Ольга Андреевна Игнатьева
Российский университет дружбы народов имени Патриса Лумумбы
Email: ignatyevaolga@rambler.ru
ORCID iD: 0000-0003-2020-4206
SPIN-код: 1817-9028
канд. биол. наук
Россия, МоскваМуса Рахимович Хаитов
Государственный научный центр «Институт иммунологии»; Российский университет дружбы народов имени Патриса Лумумбы; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Автор, ответственный за переписку.
Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-код: 3199-9803
д-р мед. наук, профессор, чл.-корр. РАН
Россия, Москва; Москва; МоскваСписок литературы
- Weidinger S., Novak N. Atopic dermatitis // Lancet. 2016. Vol. 387, N 10023. P. 1109–1122. doi: 10.1016/S0140-6736(15)00149-X
- Кубанов А.А., Намазова-Баранова Л.С., Хаитов Р.М., и др. Атопический дерматит // Российский аллергологический журнал. 2021. Т. 18, № 3. C. 44–92. doi: 10.36691/RJA1474
- Barbarot S., Auziere S., Gadkari A., et al. Epidemiology of atopic dermatitis in adults: Results from an international survey // Allergy. 2018. Vol. 73, N 6. P. 1284–1293. doi: 10.1111/all.13401
- Megna M., Patruno C., Balato A., et al. An Italian multicentre study on adult atopic dermatitis: Persistent versus adult-onset disease // Arch Dermatol Res. 2017. Vol. 309, N 6. P. 443–452. doi: 10.1007/s00403-017-1739-y
- Oliveira C., Torres T. More than skin deep: The systemic nature of atopic dermatitis // Eur J Dermatol. 2019. Vol. 29, N 3. P. 250–258. doi: 10.1684/ejd.2019.3557
- Renert-Yuval Y., Guttman-Yassky E. What's new in atopic dermatitis // Dermatol Clin. 2019. Vol. 37, N 2. P. 205–213. doi: 10.1016/j.det.2018.12.007
- Hammad H., Lambrecht B.N. Barrier epithelial cells and the control of type 2 immunity // Immunity. 2015. Vol. 43, N 1. P. 29–40. doi: 10.1016/j.immuni.2015.07.007
- Gittler J.K., Shemer A., Suárez-Fariñas M., et al. Progressive activation of T(h)2/T(h)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis // J Allergy Clin Immunol. 2012. Vol. 130, N 6. Р. 1344–1354. doi: 10.1016/j.jaci.2012.07.012
- Gandhi N.A., Bennett B.L., Graham N.M., et al. Targeting key proximal drivers of type 2 inflammation in disease // Nat Rev Drug Discov. 2016. Vol. 15, N 1. P. 35–50. doi: 10.1038/nrd4624
- Sims J.T., Chang C.Y., Higgs R.E., et al. Insights into adult atopic dermatitis heterogeneity derived from circulating biomarker profiling in patients with moderate-to-severe disease // Exp Dermatol. 2021. Vol. 30, N 11. P. 1650–1661. doi: 10.1111/exd.14389
- Gewiss C., Augustin M. Recent insights into comorbidities in atopic dermatitis // Expert Rev Clin Immunol. 2023. Vol. 19, N 4. P. 393–404. doi: 10.1080/1744666X.2023.2181790
- Beck L.A., Cork M.J., Amagai M., et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis // JID Innov. 2022. Vol. 2, N 5. P. 100131. doi: 10.1016/j.xjidi.2022.100131
- Itamura M.Y. Involvement of atopic dermatitis in the development of systemic inflammatory diseases // Int J Mol Sci. 2022. Vol. 23, N 21. Р. 13445. doi: 10.3390/ijms232113445
- Wollenberg A., Kinberger M., Arents B., et al. European guideline (EuroGuiDerm) on atopic eczema, part I. Systemic therapy // J Eur Acad Dermatol Venereol. 2022. Vol. 36, N 9. P. 1409–1431. doi: 10.1111/jdv.18345
- Wollenberg A., Kinberger M., Arents B., et al. European guideline (EuroGuiDerm) on atopic eczema, part II: Non-systemic treatments and treatment recommendations for special AE patient populations // J Eur Acad Dermatol Venereol. 2022. Vol. 36, N 11. P. 1904–1926. doi: 10.1111/jdv.18429
- Simpson E.L., Bieber T., Guttman-Yassky E., et al. Two Phase 3 Trials of dupilumab versus placebo in atopic dermatitis // New Engl J Med. 2016. Vol. 375, N 24. P. 2335–2348. doi: 10.1056/NEJMoa1610020
- Blauvelt A., de Bruin-Weller M., Gooderham M., et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): A 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial // Lancet. 2017. Vol. 389, N 10086. P. 2287–2303. doi: 10.1016/S0140-6736(17)31191-1
- De Bruin-Weller M., Thaçi D., Smith C.H., et al. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inadvisable: A placebo-controlled, randomized phase III clinical trial (LIBERTY AD CAFÉ) // Brit J Dermatol. 2018. Vol. 178, N 5. P. 1083–1101. doi: 10.1111/bjd.16156
- Thaçi D., Simpson L.E., Deleuran M., et al. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2) // J Dermatol Sci. 2019. Vol. 94, N 2. P. 266–275. doi: 10.1016/j.jdermsci.2019.02.002
- Cork M.J., Eckert L., Simpson E.L., et al. Dupilumab improves patient-reported symptoms of atopic dermatitis, symptoms of anxiety and depression, and health-related quality of life in moderate-to-severe atopic dermatitis: Analysis of pooled data from the randomized trials SOLO 1 and SOLO 2 // J Dermatol Treat. 2020. Vol. 31, N 6. P. 606–614. doi: 10.1080/09546634.2019.1612836
- Reich K., Teixeira H.D., de Bruin-Weller M., et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): Results from a randomised, double-blind, placebo-controlled, phase 3 trial // Lancet. 2021. Vol. 397, N 10290. P. 2169–2181. doi: 10.1016/S0140-6736(21)00589-4
- Reich K., Teixeira H.D., de Bruin-Weller M., et al. Upadacitinib plus topical corticosteroids in atopic dermatitis: Week 52 AD Up study results // J Allergy Clin Immunol. 2022. Vol. 149, N 3. Р. 977–987.e14. doi: 10.1016/j.jaci.2021.07.036
- Simpson E.L., Sinclair R., Forman S., et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial // Lancet. 2020. Vol. 396, N 10246. P. 255–266. doi: 10.1016/S0140-6736(20)30732-7
- Silverberg J.I., Simpson E.L., Thyssen J.P., et al. Efficacy and safety of abrocitinib in patients with moderate-to-severe atopic dermatitis: A randomized clinical trial // JAMA Dermatol. 2020. Vol. 156, N 8. P. 863–873. doi: 10.1001/jamadermatol.2020.1406
- Bieber T., Simpson E.L., Silverberg J.I., et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis // New Engl J Med. 2021. Vol. 384, N 12. Р. 1101–1112. doi: 10.1056/NEJMoa2019380
- Eczemacouncil.org [интернет]. Chicago: International Eczema Council, Inc. Режим доступа: https://www.eczemacouncil.org/. Дата обращения: 15.11.2023.
- Hanifin J.M., Rajka G. Diagnostic features of atopic dermatitis // Acta Derm Venereol. 1980. Vol. 60, Suppl. 92. Р. 44–47. doi: 10.2340/00015555924447
- Ferreira M.A., Vonk J.M., Baurecht H., et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology // Nat Genet. 2017. Vol. 49, N 12. P. 1752–1757. doi: 10.1038/ng.3985
- Palmer C.N., Irvine A.D., Terron-Kwiatkowski A., et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis // Nat Genet. 2006. Vol. 38, N 4. Р. 441–446. doi: 10.1038/ng1767
- Ruether A., Stoll M., Schwarz T., et al. Filaggrin loss-of-function variant contributes to atopic dermatitis risk in the population of Northern Germany // Brit J Dermatol. 2006. Vol. 155, N 5. P. 1093–1094. doi: 10.1111/j.1365-2133.2006.07500.x
- Irvine A.D., McLean W.H., Leung D.Y., et al. Filaggrin mutations associated with skin and allergic diseases // New Engl J Med. 2011. Vol. 365, N 14. P. 1315–1327. doi: 10.1056/NEJMra1011040
- Stefansson K., Brattsand M., Roosterman D., et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases // J Invest Dermatol. 2008. Vol. 128, N 1. P. 18–25. doi: 10.1038/sj.jid.5700965
- Vasilopoulos Y., Cork M.J., Teare D., et al. A nonsynonymous substitution of cystatin A, a cysteine protease inhibitor of house dust mite protease, leads to decreased mRNA stability and shows a significant association with atopic dermatitis // Allergy. 2007. Vol. 62, N 5. P. 514–519. doi: 10.1111/j.1398-9995.2007.01350.x
- Elias P.M., Eichenfield L.F., Fowler J.F., et al. Update on the structure and function of the skin barrier: Atopic dermatitis as an exemplar of clinical implications // Semin Cutan Med Surg. 2013. Vol. 32, N 2, Suppl. 2. Р. S21–24. doi: 10.12788/j.sder.0022
- Hershey G.K., Friedrich M.F., Esswein L.A., et al. The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor // New Engl J Med. 1997. Vol. 337, N 24. P. 1720–1725. doi: 10.1056/NEJM199712113372403
- Novak N., Kruse S., Potreck J., et al. Single nucleotide polymorphisms of the IL-18 gene are associated with atopic eczema // J Allergy Clin Immunol. 2005. Vol. 115, N 4. P. 828–833. doi: 10.1016/j.jaci.2005.01.030
- Stephan W., Christian G., Elke R., et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus // PLoS Genet. 2008. Vol. 4, N 8. P. e1000166. doi: 10.1371/journal.pgeN1000166
- Zhou J., Zhou Y., Lin L.H., et al. Association of polymorphisms in the promoter region of FCER1A gene with atopic dermatitis, chronic urticaria, asthma, and serum immunoglobulin E levels in a Han Chinese population // Hum Immunol. 2012. Vol. 73, N 3. P. 301–305. doi: 10.1016/j.humimm.2011.12.001
- Ahmad-Nejad P., Mrabet-Dahbi S., Breuer K., et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype // J Allergy Clin Immunol. 2004. Vol. 113, N 3. P. 565–567. doi: 10.1016/j.jaci.2003.12.583
- Novak N., Yu C.F., Bussmann C., et al. Putative association of a TLR9 promoter polymorphism with atopic eczema // Allergy. 2007. Vol. 62, N 7. P. 766–772. doi: 10.1111/j.1398-9995.2007.01358.x
- He H., Bissonnette R., Wu J., et al. Tape strips detect distinct immune and barrier profiles in atopic dermatitis and psoriasis // J Allergy Clin Immunol. 2021. Vol. 147, N 1. P. 199–212. doi: 10.1016/j.jaci.2020.05.048
- Reginald K., Westritschnig K., Werfel T., et al. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients // Clin Exp Allergy. 2011. Vol. 41, N 3. Р. 357–369. doi: 10.1111/j.1365-2222.2010.03655.x
- Reginald K., Westritschnig K., Werfel T., et al. The Malassezia genus in skin and systemic diseases // Clin Microbiol Rev. 2012. Vol. 25, N 1. P. 106–141. doi: 10.1128/CMR.00021-11
- Benet M., Albang R., Pinart M., et al. Integrating clinical and epidemiologic data on allergic diseases across birth cohorts: A harmonization study in the mechanisms of the development of allergy project // Am J Epidemiol. 2019. Vol. 188, N 2. P. 408–417. doi: 10.1093/aje/kwy242
- Kjaer H.F., Eller E., Andersen K.E., et al. The association between early sensitization patterns and subsequent allergic disease. The DARC birth cohort study // Pediatr Allergy Immunol. 2009. Vol. 20, N 8. P. 726–734. doi: 10.1111/j.1399-3038.2009.00862.x
- Eller E., Kjaer H.F., Høst A., et al. Food allergy and food sensitization in early childhood: Results from the DARC cohort // Allergy. 2009. Vol. 64, N 7. P. 1023–1029. doi: 10.1111/j.1398-9995.2009.01952.x
- González-Pérez R., Poza-Guedes P., Pineda F., et al. House dust mite Precision Allergy Molecular Diagnosis (PAMD) in the Th2-prone atopic dermatitis endotype // Life. 2021. Vol. 11, N 12. P. 1418. doi: 10.3390/life11121418
- Broeks S.A., Brand P.L. Atopic dermatitis is associated with a fivefold increased risk of polysensitisation in children // Acta Paediatr. 2017. Vol. 106, N 3. P. 485–488. doi: 10.1111/apa.13729
- Штырбул О.В. Значимость молекулярной аллергодиагностики в персонифицированном ведении больных атопическим дерматитом: Автореф. дис. … канд. мед. наук: 14.03.09: 14.01.10; место защиты: Государственный научный центр «Институт иммунологии». Москва, 2020. 24 с.
- Елисютина О.Г., Феденко Е.С., Смольников Е.В., и др. Значимость компонентной аллергодиагностики в определении показаний к аллергенспецифической иммунотерапии у больных атопическим дерматитом // Российский аллергологический журнал. 2022. Т. 19, № 4. C. 519–533. doi: 10.36691/RJA1588
- Roesner L.M., Werfel T. Autoimmunity (or Not) in atopic dermatitis // Front Immunol. 2019. N 10. P. 2128. doi: 10.3389/fimmu.2019.02128
- Futamura K., Matsumoto K. Epicutaneous sensitization in patients with atopic dermatitis // Pediatr Allergy Immunol Pulmonol. 2016. Vol. 29, N 4. P. 170–173. doi: 10.1089/ped.2016.0716
- Kubo A., Nagao K., Amagai M., et al. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases // J Clin Invest. 2012. Vol. 122, N 2. P. 440–447. doi: 10.1172/JCI57416
- Wassmann-Otto A., Heratizadeh A., Wichmann K., et al. Birch pollen-related foods can cause late eczematous reactions in patients with atopic dermatitis // Allergy. 2018. Vol. 73, N 10. P. 2046–2054. doi: 10.1111/all.13454
- Fölster-Holst R., Galecka J., Weißmantel S., et al. Birch pollen influence the severity of atopic eczema: Prospective clinical cohort pilot study and ex vivo penetration study // Clin Cosmet Investig Dermatol. 2015. Vol. 29, N 8. P. 539–548. doi: 10.2147/CCID.S81700
- Shershakova N., Bashkatova E., Babakhin A., et al. Allergen-specific immunotherapy with monomeric allergoid in a mouse model of atopic dermatitis // PLoS One. 2015. Vol. 10, N 8. P. e0135070. doi: 10.1371/journal.pone.0135070
- Werfel T., Allam J.P., Biedermann T., et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis // J Allergy Clin Immunol. 2016. Vol. 138, N 2. P. 336–349. doi: 10.1016/j.jaci.2016.06.010
- Heratizadeh A. Atopic dermatitis: New evidence on the role of allergic inflammation // Curr Opin Allergy Clin Immunol. 2016. Vol. 16, N 5. P. 458–464. doi: 10.1097/ACI.0000000000000308
- Fadadu R.P., Abuabara K., Balmes J.R., et al. Air pollution and atopic dermatitis, from molecular mechanisms to population-level evidence: A review // Int J Environ Res Public Health. 2023. Vol. 20, N 3. P. 2526. doi: 10.3390/ijerph20032526
- Kim Y.M., Kim J., Han Y., et al. Short-term effects of weather and air pollution on atopic dermatitis symptoms in children: A panel study in Korea // PLoS One. 2017. Vol. 12, N 4. P. e0175229. doi: 10.1371/journal.pone.0175229
- Sargen M.R., Hoffstad O., Margolis D.J. Warm, humid, and high sun exposure climates are associated with poorly controlled eczema: PEER (Pediatric Eczema Elective Registry) cohort, 2004–2012 // J Invest Dermatol. 2014. Vol. 134, N 1. P. 51–57. doi: 10.1038/jid.2013.274
- Silverberg J.I., Hanifin J., Simpson E.L. Climatic factors are associated with childhood eczema prevalence in the United States // J Invest Dermatol. 2013. Vol. 133, N 7. P. 1752–1759. doi: 10.1038/jid.2013.19
- Hankinson O. The aryl hydrocarbon receptor complex // Ann Rev Pharmacol Toxicol. 1995. Vol. 35. P. 307–340. doi: 10.1146/annurev.pa.35.040195.001515
- Murota H., Izumi M., Abd El-Latif M.I., et al. Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis // J Allergy Clin Immunol. 2012. Vol. 130, N 3. P. 671–682. doi: 10.1016/j.jaci.2012.05.027
- Hidaka T., Ogawa E., Kobayashi E.H., et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin // Nat Immunol. 2017. Vol. 18, N 1. P. 64–73. doi: 10.1038/ni.3614
- Afaq F., Zaid M.A., Pelle E., et al. Aryl hydrocarbon receptor is an ozone sensor in human skin // J Invest Dermatol. 2009. Vol. 129, N 10. P. 2396–2403. doi: 10.1038/jid.2009.85
- Vogeley C., Kress S., Lang D., et al. A gene variant of AKR1C3 contributes to interindividual susceptibilities to atopic dermatitis triggered by particulate air pollution // Allergy. 2023. Vol. 78, N 5. P. 1372–1375. doi: 10.1111/all.15622
- Niwa Y., Sumi H., Kawahira K., et al. Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan // Brit J Dermatol. 2003. Vol. 149, N 2. P. 248–254. doi: 10.1046/j.1365-2133.2003.05417.x
- Schnass W., Hüls A., Vierkötter A., et al. Traffic-related air pollution and eczema in the elderly: Findings from the SALIA cohort // Int J Hygiene Environ Health. 2018. Vol. 221, N 6. P. 861–867. doi: 10.1016/j.ijheh.2018.06.002
- Krämer U., Sugiri D., Ranft U., et al. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas // J Dermatol Sci. 2009. Vol. 56, N 2. P. 99–105. doi: 10.1016/j.jdermsci.2009.07.014
- Aguilera I., Pedersen M., Garcia-Esteban R., et al. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study // Environ Health Perspect. 2013. Vol. 121, N 3. P. 387–392. doi: 10.1289/ehp.1205281
- Asher M.I., Stewart A.W., Mallol J., et al. Which population level environmental factors are associated with asthma, rhinoconjunctivitis and eczema? Review of the ecological analyses of ISAAC Phase One // Respirat Res. 2010. Vol. 11, N 1. P. 8. doi: 10.1186/1465-9921-11-8
- Lehmann I., Rehwagen M., Diez U., et al. Enhanced in vivo IgE production and T cell polarization toward the type 2 phenotype in association with indoor exposure to VOC: Results of the LARS study // Int J Hyg Environ Health. 2001. Vol. 204, N 4. P. 211–221. doi: 10.1078/1438-4639-00100
- Lehmann I., Thoelke A., Rehwagen M., et al. The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells // Environ Toxicol. 2002. Vol. 17, N 3. P. 203–210. doi: 10.1002/tox.10055
- Aslam I., Roeffaers M.B. Carbonaceous nanoparticle air pollution: Toxicity and detection in biological samples // Nanomaterials. 2022. Vol. 12, N 22. P. 3948. doi: 10.3390/nano12223948
- Busch W., Kühnel D., Schirmer K., et al. Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes // BMC Genom. 2010. Vol. 11, N 65. doi: 10.1186/1471-2164-11-65
- Wollenberg A., Christen-Zäch S., Taieb A., et al. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children // J Eur Acad Dermatol Venereol. 2020. Vol. 34, N 12. P. 2717–2744. doi: 10.1111/jdv.16892
- Hijnen D., Knol E.F., Gent Y.Y., et al. CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22 // J Invest Dermatol. 2013. Vol. 133, N 4. P. 973–979. doi: 10.1038/jid.2012.456
- Czarnowicki T., Gonzalez J., Bonifacio K.M., et al. Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis // J Allergy Clin Immunol. 2016. Vol. 137, N 1. Р. 118–129.e5. doi: 10.1016/j.jaci.2015.08.027
- Hwang S.T. Mechanisms of T-cell homing to skin // Adv Dermatol. 2001. N 17. P. 211–241.
- Bieber T. The pro- and anti-inflammatory properties of human antigen-presenting cells expressing the high affinity receptor for IgE (Fc epsilon RI) // Immunobiol. 2007. Vol. 212, N 6. P. 499–503. doi: 10.1016/j.imbio.2007.03.001
- Leyva-Castillo J.M., McGurk A., Geha M.D. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing // Clin Immunol. 2020. N 218. Р. 108511. doi: 10.1016/j.clim.2020.108511
- Oetjen L.K., Mack M.R., Feng J., et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch // Cell. 2017. Vol. 171, N 1. P. 217–228.e13. doi: 10.1016/j.cell.2017.08.006
- He H., Del Duca E., Diaz A., et al. Mild atopic dermatitis lacks systemic inflammation and shows reduced nonlesional skin abnormalities // J Allergy Clin Immunology. 2021. Vol. 147, N 4. P. 1369–1380. doi: 10.1016/j.jaci.2020.08.041
- Simon D., Aeberhard C., Erdemoglu Y., et al. Th17 cells and tissue remodeling in atopic and contact dermatitis // Allergy. 2014. Vol. 69, N 1. P. 125–131. doi: 10.1111/all.12351
- Noda S., Suárez-Fariñas M., Ungar B., et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased Th17 polarization // J Allergy Clin Immunol. 2015. Vol. 136, N 5. Р. 1254–1264. doi: 10.1016/j.jaci.2015.08.015
- Bratton D.L., Hamid Q., Boguniewicz M., et al. Granulocyte macrophage colony-stimulating factor contributes to enhanced monocyte survival in chronic atopic dermatitis // J Clin Invest. 1995. Vol. 95, N 1. P. 211–218. doi: 10.1172/JCI117642
- Purwar R., Werfel T., Wittmann M., et al. IL-13-stimulated human keratinocytes preferentially attract CD4+CCR4+ T cells: Possible role in atopic dermatitis // J Invest Dermatol. 2006. Vol. 126, N 5. P. 1043–1051. doi: 10.1038/sj.jid.5700085
- Simon D., von Gunten S., Borelli S., et al. The interleukin-13 production by peripheral blood T cells from atopic dermatitis patients does not require CD2 costimulation // Int Arch Allergy Immunol. 2003. Vol. 132, N 2. P. 148–155. doi: 10.1159/000073716
- He R., Oyoshi M.K., Garibyan L., et al. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation // Proc Natl Acad Sci USA. 2008. Vol. 105, N 33. P. 11875–11880. doi: 10.1073/pnas.0801532105
- Soumelis V., Reche P.A., Kanzler H., et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP // Nat Immunol. 2002. Vol. 3, N 7. P. 673–680. doi: 10.1038/ni805
- Souwer Y., Szegedi K., Kapsenberg M.L., et al. IL-17 and IL-22 in atopic allergic disease // Curr Opin Immunol. 2010. Vol. 22, N 6. P. 821–826. doi: 10.1016/j.coi.2010.10.013
- Janssen E.M., Dy S.M., Meara A.S., et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis // J Allergy Clin Immunol. 2013. Vol. 132, N 2. P. 361–370. doi: 10.1016/j.jaci.2013.04.046
- Ungar B., Garcet S., Gonzalez J., et al. An integrated model of atopic dermatitis biomarkers highlights the systemic nature of the disease // J Invest Dermatol. 2017. Vol. 137, N 3. P. 603–613. doi: 10.1016/j.jid.2016.09.037
- Bao L., Zhang H., Chan L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis // JAKSTAT. 2013. Vol. 2, N 3. P. e24137. doi: 10.4161/jkst.24137
- Yoshida T., Beck L.A., de Benedetto A. Skin barrier defects in atopic dermatitis: From old idea to new opportunity // Allergol Int. 2022. Vol. 71, N 1. P. 3–13. doi: 10.1016/j.alit.2021.11.006
- Leyden J.J., Marples R.R., Kligman A.M. Staphylococcus aureus in the lesions of atopic dermatitis // Brit J Dermatol. 1974. Vol. 90, N 5. P. 525–530. doi: 10.1111/j.1365-2133.1974.tb06447.x
- Lin Y.T., Wang C.T., Chiang B.L., et al. Role of bacterial pathogens in atopic dermatitis // Clin Rev Allergy Immunol. 2007. Vol. 33, N 3. P. 167–177. doi: 10.1007/s12016-007-0044-5
- Nakamura Y., Oscherwitz J., Cease K.B., et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells // Nature. 2013. Vol. 503, N 7476. P. 397–401. doi: 10.1038/nature12655
- Byrd A.L., Deming C., Cassidy S.K., et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis // Sci Transl Med. 2017. Vol. 9, N 397. P. 4651. doi: 10.1126/scitranslmed.aal4651
- Leung D.Y., Harbeck R., Bina P., et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens // J Clin Invest. 1993. Vol. 92, N 3. P. 1374–1380. doi: 10.1172/JCI116711
- Miajlovic H., Fallon P.G., Irvine A.D., et al. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus // J Allergy Clin Immunol. 2010. Vol. 126, N 6. P. 1184–1190. doi: 10.1016/j.jaci.2010.09.015
- Nakatsuji T., Chen T.H., Two A.M., et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression // J Invest Dermatol. 2016. Vol. 136, N 11. P. 2192–2200. doi: 10.1016/j.jid.2016.05.127
- Chng K.R., Tay A.S., Li C., et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare // Nat Microbiol. 2016. Vol. 1, N 9. P. 16106. doi: 10.1038/nmicrobiol.2016.106
- Totté J.E., van der Feltz W.T., Hennekam M., et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis // Brit J Dermatol. 2016. Vol. 175, N 4. P. 687–695. doi: 10.1111/bjd.14566
- Cabanillas B., Novak N. Atopic dermatitis and filaggrin // Curr Opin Immunol. 2016. Vol. 42. P. 1–8. doi: 10.1016/j.coi.2016.05.002
- Glatz M., Bosshard P.P., Hoetzenecker W., et al. The role of Malassezia spp. in atopic dermatitis // J Clin Med. 2015. Vol. 4, N 6. P. 1217–1228. doi: 10.3390/jcm4061217
- Simpson E.L., Villarreal M., Jepson B., et al. Patients with atopic dermatitis colonized with Staphylococcus aureus have a distinct phenotype and endotype // J Invest Dermatol. 2018. Vol. 138, N 10. P. 2224–2233. doi: 10.1016/j.jid.2018.03.1517
- Bosma A.L., Ascott A., Iskandar R., et al. Classifying atopic dermatitis: A systematic review of phenotypes and associated characteristics // J Eur Acad Dermatol Venereol. 2022. Vol. 36, N 6. P. 807–819. doi: 10.1111/jdv.18008
- Елисютина О.Г., Литовкина А.О., Смольников Е.В., и др. Клинические особенности различных фенотипов атопического дерматита // Российский аллергологический журнал. 2019. Т. 16, № 4. C. 30–41. doi: 10.36691/RAJ.2020.16.4.004
- Eichenfield L.F., Tom W.L, Chamlin S.L., et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis // J Am Acad Dermatol. 2014. Vol. 70, N 2. P. 338–351. doi: 10.1016/j.jaad.2013.10.010
- Shin Y.H., Hwang J., Kwon R., et al. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019 // Allergy. 2023. Vol. 78, N 8. P. 2232–2254. doi: 10.1111/all.15807
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework // Clin Pharmacol Therapeut. 2001. Vol. 69, N 3. P. 89–95. doi: 10.1067/mcp.2001.113989
- Hughes A.J., Tawfik S.S., Baruah K.P., et al. Tape strips in dermatology research // Brit J Dermatol. 2021. Vol. 185, N 1. P. 26–35. doi: 10.1111/bjd.19760
- Renert-Yuval Y., Thyssen J.P., Bissonnette R., et al. Biomarkers in atopic dermatitis: A review on behalf of the International Eczema Council // J Allergy Clin Immunol. 2021. Vol. 147, N 4. P. 1174–1190. doi: 10.1016/j.jaci.2021.01.013
- Bieber T., d'Erme A.M., Akdis C.A., et al. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? // J Allergy Clin Immunol. 2017. Vol. 139, N 4S. P. S58–S64. doi: 10.1016/j.jaci.2017.01.008
- Rosińska-Więckowicz A., Czarnecka-Operacz M., Adamski Z. Selected immunological parameters in clinical evaluation of patients with atopic dermatitis // Postepy Dermatol Alergol. 2016. Vol. 33, N 3. P. 211–218. doi: 10.5114/ada.2016.60614
- Yoshizawa Y., Nomaguchi H., Izaki S., et al. Serum cytokine levels in atopic dermatitis // Clin Exp Dermatol. 2002. Vol. 27, N 3. P. 225–229. doi: 10.1046/j.1365-2230.2002.00987.x
- Thijs J., Krastev T., Weidinger S., et al. Biomarkers for atopic dermatitis: A systematic review and meta-analysis // Curr Opin Allergy Clin Immunol. 2015. Vol. 15, N 5. P. 453–460. doi: 10.1097/ACI.0000000000000198
- Kägi M.K., Joller-Jemelka H., Wüthrich B. Correlation of eosinophils, eosinophil cationic protein and soluble interleukin-2 receptor with the clinical activity of atopic dermatitis // Dermatology. 1992. Vol. 185, N 2. P. 88–92. doi: 10.1159/000247419
- Ariëns L.F., van der Schaft J., Bakker D.S., et al. Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients: First clinical and biomarker results from the BioDay registry // Allergy. 2020. Vol. 75, N 1. P. 116–126. doi: 10.1111/all.14080
- Koning H., Neijens H.J., Baert M.R., et al. T cell subsets and cytokines in allergic and non-allergic children. I. Analysis of IL-4, IFN-gamma and IL-13 mRNA expression and protein production // Cytokine. 1997. Vol. 9, N 6. P. 416–426. doi: 10.1006/cyto.1996.0184
- Szegedi K., Lutter R., Res P.C., et al. Cytokine profiles in interstitial fluid from chronic atopic dermatitis skin // J Eur Acad Dermatol Venereol. 2015. Vol. 29, N 11. P. 2136–2144. doi: 10.1111/jdv.13160
- Sanyal R.D., Pavel A.B., Glickman J., et al. Atopic dermatitis in African American patients is Th2/Th22-skewed with Th1/Th17 attenuation // Ann Allergy Asthma Immunol. 2019. Vol. 122, N 1. P. 99–110. doi: 10.1016/j.anai.2018.08.024
- Leung T.F., Ma K.C., Hon K.L., et al. Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children // Pediatr Allergy Immunol. 2003. Vol. 14, N 4. P. 296–301. doi: 10.1034/j.1399-3038.2003.00052.x
- Hijnen D., de Bruin-Weller M., Oosting B., et al. Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell-attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis // J Allergy Clin Immunol. 2004. Vol. 113, N 2. P. 334–340. doi: 10.1016/j.jaci.2003.12.007
- Furukawa H., Takahashi M., Nakamura K., et al. Effect of an antiallergic drug (Olopatadine hydrochloride) on TARC/CCL17 and MDC/CCL22 production by PBMCs from patients with atopic dermatitis // J Dermatol Sci. 2004. Vol. 36, N 3. P. 165–172. doi: 10.1016/j.jdermsci.2004.09.001
- Yasukochi Y., Nakahara T., Abe T., et al. Reduction of serum TARC levels in atopic dermatitis by topical anti-inflammatory treatments // Asian Pac J Allergy Immunol. 2014. Vol. 32, N 3. P. 240–245. doi: 10.12932/AP0419.32.3.2014
- Kyoya M., Kawakami T., Soma Y. Serum thymus and activation-regulated chemokine (TARC) and interleukin-31 levels as biomarkers for monitoring in adult atopic dermatitis // J Dermatol Sci. 2014. Vol. 75, N 3. P. 204–207. doi: 10.1016/j.jdermsci.2014.06.001
- Gohar M.K., Atta A.H., Nasr M.M., Hussein D.N. Serum Thymus and Activation Regulated Chemokine (TARC), IL-18 and IL-18 gene polymorphism as associative factors with atopic dermatitis // Egypt J Immunol. 2017. Vol. 24, N 2. P. 9–22.
- Bogaczewicz J., Malinowska K., Sysa-Jedrzejowska A., Wozniacka A. Medium-dose ultraviolet A1 phototherapy and mRNA expression of TSLP, TARC, IL-5, and IL-13 in acute skin lesions in atopic dermatitis // Int J Dermatol. 2016. Vol. 55, N 8. P. 856–863. doi: 10.1111/ijd.12992
- Vekaria A.S., Brunner P.M., Aleisa A.I., et al. Moderate-to-severe atopic dermatitis patients show increases in serum C-reactive protein levels, correlating with skin disease activity // F1000Research. 2017. Vol. 6. P. 1712. doi: 10.12688/f1000research.12422.2
- Morishima Y., Kawashima H., Takekuma K., Hoshika A. Changes in serum lactate dehydrogenase activity in children with atopic dermatitis // Pediatr Int. 2010. Vol. 52, N 2. P. 171–174. doi: 10.1111/j.1442-200X.2009.02908.x
- Kou K., Aihara M., Matsunaga T., et al. Association of serum interleukin-18 and other biomarkers with disease severity in adults with atopic dermatitis // Arch Dermatol Res. 2012. Vol. 304, N 4. P. 305–312. doi: 10.1007/s00403-011-1198-9
- Mizawa M., Yamaguchi M., Ueda C., et al. Stress evaluation in adult patients with atopic dermatitis using salivary cortisol // BioMed Res Int. 2013. Vol. 2013. P. 138027. doi: 10.1155/2013/138027
- Kezic S., O'Regan G.M., Lutter R., et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency // J Allergy Clin Immunol. 2012. Vol. 129, N 4. P. 1031–1039. doi: 10.1016/j.jaci.2011.12.989
- Khattri S., Shemer A., Rozenblit M., et al. Cyclosporine in patients with atopic dermatitis modulates activated inflammatory pathways and reverses epidermal pathology // J Allergy Clin Immunol. 2014. Vol. 133, N 6. P. 1626–1634. doi: 10.1016/j.jaci.2014.03.003
- Brunner P.M., Pavel A.B., Khattri S., et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab // J Allergy Clin Immunol. 2019. Vol. 143, N 1. P. 142–154. doi: 10.1016/j.jaci.2018.07.028
- Glickman J.W., Han J., Garcet S., et al. Improving evaluation of drugs in atopic dermatitis by combining clinical and molecular measures // J Allergy Clin Immunol Pract. 2020. Vol. 8, N 10. P. 3622–3625.e19. doi: 10.1016/j.jaip.2020.07.015
- Dyjack N., Goleva E., Rios C., et al. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2-high atopic dermatitis disease endotype // J Allergy Clin Immunol. 2018. Vol. 141, N 4. P. 1298–1309. doi: 10.1016/j.jaci.2017.10.046
- Guttman-Yassky E., Diaz A., Pavel A.B., et al. Use of tape strips to detect immune and barrier abnormalities in the skin of children with early-onset atopic dermatitis // JAMA Dermatol. 2019. Vol. 155, N 12. P. 1358–1370. doi: 10.1001/jamadermatol.2019.2983
Дополнительные файлы
