Selectins and their involvement in the pathogenesis of cardiovascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents current data on the structure and functional role of cell adhesion molecules belonging to the selectin family (selectins P, L and E), and their involvement in the pathogenesis of cardiovascular diseases. On the one hand, intercellular adhesion molecules of the vascular wall endothelium, platelets and leukocytes are an important link in the processes of vasculogenesis, development and regeneration of the vascular system. On the other hand, these molecules participate in the earliest stages of endothelial dysfunction with the subsequent development of pathology. For this reason, figuring out the mechanisms of activity of this group of molecules is very important for understanding the molecular basis of the cardiovascular diseases pathogenesis. The adhesion of molecules, both between cells and between cells and a component of the extracellular matrix, is the most important stage of physiological and biochemical processes. According to present knowledge, five classes of intercellular adhesion molecules are known: integrins, cadherins, immunoglobulins (including nectins), selectins and addressins. All of them are bonded to a cytoplasmic membrane and provide the interaction of cells with each other. Some of them are transmembrane and associated with the cytoskeleton of the cell. On the cell surface, intercellular adhesion molecules can be located in clusters, forming multipoint binding sites and thereby determining the degree of avidity. One of the most significant functions of selectins is participation in the initial stage of the leukocyte adhesion cascade, which results in their binding to the endothelium, rolling and further extravasation into tissues. The first stage of this process is mediated by specific non-covalent interactions between selectins and their glycan ligands, with the glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains one of the main strategies aimed at developing new methods of treating immune, inflammatory and oncological diseases.

About the authors

Roman E. Kalinin

Ryazan State Medical University named after I.P. Pavlov

Email: kalinin-re@yandex.ru
ORCID iD: 0000-0002-0817-9573
SPIN-code: 5009-2318

M.D., D. Sci., Prof., Head, Depart. of cardiovascular, endovascular, operative surgery and topographic anatomy

Russian Federation, Ryazan, Russia

Nataliy V. Korotkova

Ryazan State Medical University named after I.P. Pavlov

Author for correspondence.
Email: fnv8@yandex.ru
ORCID iD: 0000-0001-7974-2450
SPIN-code: 3651-3813
ResearcherId: I-8028-2018

M.D., Cand. Sci., Assoc. Prof., Depart. of biological chemistry with course of clinical laboratory diagnostics, Continuing Professional Education Faculty, Senior Researcher, Central Research Laboratory

Russian Federation, Ryazan, Russia

Igor A. Suchkov

Ryazan State Medical University named after I.P. Pavlov

Email: i.suchkov@rzgmu.ru
ORCID iD: 0000-0002-1292-5452
SPIN-code: 6473-8662

M.D., D. Sci., Prof., Depart. of cardiovascular, endovascular, operative surgery and topographic anatomy

Russian Federation, Ryazan, Russia

Nina D. Mzhavanadze

Ryazan State Medical University named after I.P. Pavlov

Email: nina_mzhavanadze@mail.ru
ORCID iD: 0000-0001-5437-1112
SPIN-code: 7757-8854
ResearcherId: M-1732-2016

M.D., Cand. Sci., Assoc. Prof., Depart. of cardiovascular, endovascular, operative surgery and topographic anatomy, senior researcher at the central research laboratory

Russian Federation, Ryazan, Russia

Alexander N. Ryabkov

Ryazan State Medical University named after I.P. Pavlov

Email: ryabkov.an@tfoms-rzn.ru
ORCID iD: 0000-0003-4705-747X
ResearcherId: S-1779-2016

M.D., D. Sci., Prof., Depart. of cardiovascular, endovascular, operative surgery and topographic anatomy

Russian Federation, Ryazan, Russia

References

  1. Wayne Smith C. Adhesion molecules and receptors. J Allergy Clin Immunol. 2008;121(2):S375–S379; quiz S414. doi: 10.1016/j.jaci.2007.07.030.
  2. Silva M, Videira PA, Sackstein R. E-selectin ligands in the human mononuclear phagocyte system: Implications for infection, inflammation, and immunotherapy. Front Immunol. 2018;8:1878. doi: 10.3389/fimmu.2017.01878.
  3. Ludwig RJ, Schon MP, Boehncke WH. P-selectin: A common therapeutic target for cardiovascular disor­ders, inflammation and tumour metastasis. Expert Opin Ther Targets. 2007;11(8):1103–1117. doi: 10.1517/14728222.11.8.1103.
  4. Tvaroška I, Selvaraj C, Koča J. Selectins — The two Dr. Jekyll and Mr. Hyde faces of adhesion molecules — a review. Molecules. 2020;25(12):2835. doi: 10.3390/molecules25122835.
  5. Ashwell G, Modell AG. The role of surface carbohydrates in liver recognition and the transport of circula­ting glycoproteins. In: Meister A, editor. Advances in enzymo­logy and related areas of molecular biology. Vol. 41. New York: John Wiley & Sons; 1974. p. 99–128. doi: 10.1002/9780470122860.ch3.
  6. Sperandio M, Gleissner CA, Ley K. Glycosylation in immune cell trafficking. Immunol Rev. 2009;230(1):97–113. doi: 10.1111/j.1600-065X.2009.00795.x.
  7. Kappelmayer J, Nagy BJr. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. Biomed Res Int. 2017;6138145. doi: 10.1155/2017/6138145.
  8. Ramachandran V, Yago T, Epperson TK, Kobzdej MM, Nollert MU, Cummings RD, Zhu C, McEver RP. Dimerization of a selectin and its ligand stabilizes cell rol­ling and enhances tether strength in shear flow. Proc Natl Acad Sci USA. 2001;98(18):10166–10171. doi: 10.1073/pnas.171248098.
  9. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259–3287. doi: 10.1182/blood.V88.9.3259.bloodjournal8893259.
  10. Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med. 2012;52(3):556–592. doi: 10.1016/j.freeradbiomed.2011.11.002.
  11. Liu Z, Miner JJ, Yago T, Yao L, Lupu F, Xia L, McEver RP. Differential regulation of human and murine P-selectin expression and function in vivo. J Exp Med. 2010;207(13):2975–2987. doi: 10.1084/jem.20101545.
  12. Hossain M, Qadri SM, Liu L. Inhibition of nitric оxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm (Lond). 2012;9:28. doi: 10.1186/1476-9255-9-28.
  13. Chaitanya GV, Cromer W, Wells S, Jennings M, Mathis JM, Minagar A, Alexander JS. Metabolic modulation of cytokine-induced brain endothelial adhesion mo­lecule expression. Microcirculation. 2012;19(2):155–165. doi: 10.1111/j.1549-8719.2011.00141.x.
  14. Huang RB, Gonzalez AL, Eniola-Adefeso O. Laminar shear stress elicit distinct endothelial cell E-selectin expression pattern via TNFα and IL-1β activation. Biotechnol Bioeng. 2013;110(3):999–1003. doi: 10.1002/bit.24746.
  15. Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1β-induced E-selectin expression in human endothelial cells. PLoS One. 2012;7(2):e31874. doi: 10.1371/journal.pone.0031874.
  16. Chen TC, Chien SJ, Kuo HC, Huang WS, Sheen JM, Lin TH, Yen CK, Sung ML, Chen CN. High glucose-trea­ted macrophages augment E-selectin expression in endothelial cells. J Biol Chem. 2011;286(29):25564–25573. doi: 10.1074/jbc.M111.230540.
  17. Nimrichter L, Burdick MM, Aoki K, Laroy W, Fierro MA, Hudson SA, Von Seggern CE, Cotter RJ, Bochner BS, Tiemeyer M, Konstantopoulos K, Schnaar RL. E-selectin receptors on human leukocytes. Blood. 2008;112(9):3744–3752. doi: 10.1182/blood-2008-04-149641.
  18. Sundd P, Pospieszalska MK, Cheung LS, Konstantopoulos K, Ley K. Biomechanics of leukocyte rolling. Biorheology. 2011;48(1):1–35. doi: 10.3233/BIR-2011-0579.
  19. Nishiwaki Y, Yoshida M, Iwaguro H, Masuda H, Nitta N, Asahara T, Isobe M. Endothelial E-selectin potentiates neovascularization via endothelial progenitor cell-dependent and -independent mechanisms. Arterioscler Thromb Vasc Biol. 2007;27(3):512–518. doi: 10.1161/01.ATV.0000254812.23238.2b.
  20. Ivanov AN, Norkin IA, Puchinyan DM, Shirokov VY, Zhdanova OY. Endothelial cell adhesion molecules. Uspekhi fiziologicheskikh nauk. 2014;45(4):34–49. (In Russ.)
  21. Jutila MA, Watts G, Walcheck B, Kansas GS. Cha­racterization of a functionally important and evolutio­narily well-conserved epitope mapped to the short consensus repeats of E-selectin and L-selectin. J Exp Med. 1992;175(6):1565–1573. doi: 10.1084/jem.175.6.1565.
  22. Khodabandehlou K, Masehi-Lano J, Poon C, Wang J, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood). 2017;242(8):799–812. doi: 10.1177/1535370217693116.
  23. Henning RJ, Bourgeois M, Harbison RD. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: Mechanisms of action and role in cardiovascular disorders. Cardiovasc Toxicol. 2018;18(6):493–506. doi: 10.1007/s12012-018-9462-2.
  24. Grilz E, Marosi C, Königsbrügge O, Riedl J, Posch F, Lamm W, Lang IM, Pabinger I, Ay C. Association of complete blood count parameters, D-dimer, and so­luble P-selectin with risk of arterial thromboembolism in patients with cancer. J Thromb Haemost. 2019;17(8):1335–1344. doi: 10.1111/jth.14484.
  25. Schutzman LM, Rigor RR, Khosravi N, Galante JM, Brown IE. P-selectin is critical for de novo pulmonary arterial thrombosis following blunt thoracic trauma. J Trauma Acute Care Surg. 2019;86(4):583–591. doi: 10.1097/TA.0000000000002166.
  26. Van der Laan AM, Hirsch A, Robbers LF, Nij­veldt R, Lommerse I, Delewi RA, van der Vleuten P, Biemond BJ, Zwaginga JJ, van der Giessen WJ, Zijlstra F, van Rossum AC, Voermans C, van der Schoot CE, Piek JJ. A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: Monocytes and myocardial infarction. Am Heart J. 2012;163:57–65.e2. doi: 10.1016/j.ahj.2011.09.002.
  27. Kalinin RE, Suchkov IA, Klimentova ЕA, Egorov AA, Povarov VO. Apoptosis in vascular pathology: present and future. IP Pavlov Russian Medical Biological Herald. 2020;28(1):79–87. (In Russ.) doi: 10.23888/PAVLOVJ202028179-87.
  28. Weil BR, Neelamegham S. Selectins and immune cells in acute myocardial infarction and post-infarction ventricular remodeling: Pathophysiology and novel treatments. Front Immunol. 2019;10:300. doi: 10.3389/fimmu.2019.00300.
  29. Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogen Tissue Repair. 2013;6(1):11. doi: 10.1186/1755-1536-6-11.
  30. Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DPV. The innate immune response in reperfused myocardium. Cardiovasc Res. 2012;94(2):276–283. doi: 10.1093/cvr/cvs018.
  31. Heusch G. The coronary circulation as a target of cardioprotection. Circ Res. 2016;118(10):1643–1658. doi: 10.1161/CIRCRESAHA.116.308640.
  32. Tardif JC, Tanguay JF, Wright SR, Duchatelle V, Petroni T, Grégoire JC, Ibrahim R, Heinonen TM, Robb S, Bertrand OF, Cournoyer D, Johnson D, Mann J, Guertin MC, L'Allier PL. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. Randomized controlled trial. J Am Coll Cardiol. 2013;61(20):2048–2055. doi: 10.1016/j.jacc.2013.03.003.
  33. Izzi B, Gianfagna F, Yang Wen-Yi, Cludts K, De Curtis A, Verhamme P, Di Castelnuovo A, Cerletti C, Donati MB, de Gaetano G, Staessen JA, Hoylaerts MF, Iacoviello L, Moli-family Investigators. Variation of PEAR1 DNA methylation influences platelet and leukocyte function. Clin Epigenetics. 2019;11(1):151. doi: 10.1186/s13148-019-0744-8.
  34. Lampka M, Grabczewska Z, Krajewska M, Piskorska E, Hołyńska-Iwan I, Kubica J. Soluble selectins in myocardial infarction. Pol Merkur Lekarski. 2013;34(202):188–191.
  35. Zhang X, Liu S, Weng X. Brg1 deficiency in vascular endothelial cells blocks neutrophil recruitment and ameliorates cardiac ischemia-reperfusion injury in mice. Int J Cardiol. 2018;15(269):250–258. doi: 10.1016/j.ijcard.2018.07.105.
  36. McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107(3):331–339. doi: 10.1093/cvr/cvv154.
  37. Pircher J, Engelmann B, Massberg S, Schulz C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb Haemost. 2019;119(8):1274–1282. doi: 10.1055/s-0039-1692983.
  38. Poredoš P, Ježovnik MK. Markers of preclinical atherosclerosis and their clinical relevance. Vasa. 2015;44(4):247–256. doi: 10.1024/0301-1526/a000439.
  39. Colijn S, Muthukumar V, Xie J, Gao S, Griffi CT. Cell-specific and athero-protective roles for RIPK3 in a murine model of atherosclerosis. Dis Model Mech. 2020;13(1):dmm041962. doi: 10.1242/dmm.041962.
  40. Ye Zi, Zhong L, Zhu S, Wang Y. The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway. Cell Death Dis. 2019;10(7):507. doi: 10.1038/s41419-019-1736-5.
  41. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191(1):189–194. doi: 10.1084/jem.191.1.189.
  42. Woollard KJ, Chin-Dusting J. Therapeutic targeting of P-selectin in atherosclerosis. Inflamm Allergy Drug Targets. 2007;6(1):69–74. doi: 10.2174/187152807780077345.
  43. Shanaev IN. Mo­dern theories of pathogenesis of trophic ulcer of venous etio­logy. Nauka molodykh (Eruditio Juvenium). 2019;7(4):600–611. (In Russ.) doi: 10.23888/HMJ201974600-611.
  44. Moñux G, Serna-Soto M, Plá-Sanchez F, Zamorano-León JJ, Segura A, Rial R, Freixer G, Zekri-Nechar K, Hugo-Martínez C, Serrano J, López-Farré A. Compression stockings attenuate the expression of proteins associated with vascular damage in human varicose veins. Vasc Surg Venous Lymphat Disord. 2021;9(2):428–434. doi: 10.1016/j.jvsv.2020.05.020.
  45. Mikuła-Pietrasik J, Uruski P, Aniukiewicz K, Sosińska P, Krasiński Z, Tykarski A, Książek K. Serum from varicose patients induces senescence-related dysfunction of vascular endothelium generating local and systemic proinflammatory conditions. Oxid Med Cell Longev. 2016;2016:2069290. doi: 10.1155/2016/2069290.
  46. Goshchynsky V, Migenko B, Riabokon S. Pathophysiological and pathomorphological aspects of relapse of varicose veins after endovascular laser vein coagulation. Wiad Lek. 2020;73(11):2468–2475. doi: 10.36740/WLek202011124.
  47. Yagoda AV, Gladkikh NN, Gladkikh LN. The specifics of adhesion function of endothelium in various clinical variants of primary mitral valve prolapse. Kardiovaskulyarnaya terapiya i profilaktika. 2016;15(1):45–50. (In Russ.) doi: 10.15829/1728-8800-2016-1-45-50.
  48. Perkins LA, Anderson CJ, Novelli EM. Targeting P‐selectin adhesion molecule in molecular imaging: P‐selectin expression as valuable imaging biomarker of inflammation in cardiovascular disease. J Nucl Med. 2019;60(12):1691–1697. doi: 10.2967/jnumed.118.225169.
  49. Li B, Juenet M, Aid‐Launais R, Maire M, Ollivier V, Letourneur D, Chauvierre C. Development of polymer microcapsules functionalized with fucoidan to target P‐selectin overexpressed in cardiovascular diseases. Adv Healthc Mater. 2017;6(4):1601200. doi: 10.1002/adhm.201601200.
  50. Silva M, Videira PA, Sackstein R. E-selectin ligands in the human mononuclear phagocyte system: Implications for infection, inflammation, and immunotherapy. Front Immunol. 2018;8:1878. doi: 10.3389/fimmu.2017.01878.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Схематическое представление структур P-, E- и L-селектинов; расшифровка обозначений в тексте

Download (31KB)

© 2022 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».