Influence of genetic polymorphism of innate immunity genes on the development of immune pathology

Cover Page

Cite item

Full Text

Abstract

The article presents the literature review devoted to NOD2/CARD15 gene. Genetic variability affects the susceptibility and development of certain human diseases such as autoimmune diseases and infections, affecting numerous cellular processes, and thus modulating the response to environmental and internal factors. The NOD2/CARD15 gene plays a major role in the development and course of various diseases such as Grohn's disease, Blau syndrome, as well as the risk of developing severe complications of the “graft versus host” reaction after allogeneic stem cell transplantation. NOD (Nucleotide Oligomerization Domain) is the domain of nucleotide oligomerization. NOD-like receptors play an important regulatory role in the response on infectious agents and at activation of the adaptive immune response. It is known that the mechanism of action of NOD-like receptors is based on the response to the pathogen of associated molecular patterns mainly of bacterial origin, which leads to the formation and activation of inflammasome. Recently, another NOD-like receptor activation mechanism has been revealed that provides innate virus recognition. The review presents Toll-like receptors, which are part of the innate immune system. Innate immunity is an inherited system of protection of the body against pathogenic and non-pathogenic microorganisms. The mechanisms of innate immunity develop very quickly. In newborns, the immune system is mainly dependent on components of the innate or antigen-independent immune system including phagocytes, natural killer cells, antigen-presenting cells, humoral inflammatory mediators and complement system.

About the authors

M A Kazumian

Medical College; Rostov State Medical University

Author for correspondence.
Email: kazumianm@yandex.ru
SPIN-code: 5319-9946
Russian Federation, Moscow, Russia; Rostov-on-Don, Russia

E D Teplyakova

Rostov State Medical University; Children’s City Polyclinic No. 4; Department of Health

Email: elenatepl@rambler.ru
SPIN-code: 5864-9883
Russian Federation, Rostov-on-Don, Russia; Rostov-on-Don, Russia; Rostov-on-Don, Russia

A V Vasilenok

Medical College; Pirogov Russian National Research Medical University,

Email: aleksdokk@mail.ru
SPIN-code: 4753-5447
Russian Federation, Moscow, Russia; Moscow, Russia

References

  1. Roitt I., Delves P., Martin S.M., Burton D.R. Roitt's essential immunology. 11th ed. Wiley. John and Sons. Inc. 2006; 1126 р.
  2. Levy O., Netea M.G. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr. Res. 2014; 75 (1–2): 184–188. doi: 10.1038/pr.2013.214.
  3. Fearon D.T. Seeking wisdom in innate immunity. Nature. 1997; 388: 323–324. doi: 10.1038/40967.
  4. Ahmad I., Simanyi E., Guroji P. et al. Toll-like receptor-4 deficiency enhances repair of UVR-induced cutaneous DNA damage by nucleotide excision repair mechanism. J. Invest. Dermatol. 2014; 134: 1710–1717. doi: 10.1038/jid.2013.530.
  5. Kawai T., Akira S. Innate immune recognition of viral infection. Nat. Immunol. 2006; 7: 131–137. doi: 10.1038/ni1303.
  6. Yanai H., Ban T., Wang Z. et al. HMGB proteins function as universal sentinels for nucleic-acid-media­ted innate immune responses. Nature. 2009; 462 (7269): ­99–103. doi: 10.1038/nature08512.
  7. Ting J.P., Duncan J.A., Lei Y. How the noninflammasome NLRs function in the innate immune system. ­Science. 2010; 327: 286–290. doi: 10.1126/science.1184004.
  8. Ting J.P., Lovering R.C., Alnemri E.S. et al. The NLR gene family: A standard nomenclature. Immunity. 2008; 28 (3): 285–287. doi: 10.1016/j.immuni.2008.02.005.
  9. Kawai T., Akir S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Intern. Immunol. 2009; 21 (4): 317–337. doi: 10.1093/intimm/dxp017.
  10. Sokol’nik V.P. Intracellular PRRs and their role in the pathogenesis of several diseases. Meditsinskiy zhurnal. 2014; (4): 21–25.
  11. Dagil’ Yu.A., Arbatskiy N.P., Alkhazova B.I. et al. Structural features of selective and non-selective NOD receptor agonists. Meditsinskaya immunologiya. 2017; 19 (6): 705–714.
  12. Drutskaya M.S., Belousov P.V., Nedospasov S.A. Innate mechanisms of viral recognition. Molekulyarnaya biologiya. 2011; 45 (1): 7–19.
  13. Seth R.B., Sun L., Ea C.K., Chen Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005; 122: 669–682. doi: 10.1016/j.cell.2005.08.012.
  14. Sabbah A., Chang T.H., Harnack R. et al. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 2009; 10: 1073–1080. doi: 10.1038/ni.1782.
  15. Dugan J.W., Albor A., David L. et al. Nucleotide oligomerization domain 2 interacts with 2'-5'- oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Mol. Immunol. 2009; 47 (2–3): 560–566. doi: 10.1016/j.molimm.2009.09.025.
  16. Orr N., Chanock S. Common genetic variation and human disease. Adv. Genet. 2008; 62: 1–32. doi: 10.1016/S0065-2660(08)00601-9.
  17. Iva­nov A.M., Kamilova T.A., Nikitin V.Yu. et al. Polymorphism of receptors of innate immunity. Vestnik rossiyskoy voenno-meditsinskoy akademii. 2009; (1): 172–184.
  18. Titova N.D. The role of innate immunity system for allergic diseases. Immunopatologiya, allergologiya, infektologiya. 2009; (3): 32–39.
  19. Jiao D., Wong C.K., Qiu H.N. et al. NOD2 and TLR2 ligands trigger the activation of basophils and eosi­nophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation. Cell. Mol. Immunol. 2015; 13 (4): 535–550. doi: 10.1038/cmi.2015.77.
  20. Hruz P., Zinkernagel A.S., Jenikova G. et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation. Proc. Natl. Acad. Sci. 2009; 106: 12 873–12 878. doi: 10.1073/pnas.0904958106.
  21. Nomura I., Goleva E., Howell M.D. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 2003; 171: 3262–3269. doi: 10.4049/jimmunol.171.6.3262.
  22. Rieg S., Steffen H., Seeber S. et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol. 2005; 174: 8003–8010. doi: 10.4049/jimmunol.174.12.8003.
  23. Shiohara T., Doi T., Hayakawa J. Defective swea­ting responses in atopic dermatitis. Curr. Probl. Dermatol. 2011; 41: 68–79. doi: 10.1159/000323297.
  24. Wong C.-K., Chu I.M.-T., Hon K.-L. et al. Aberrant expression of bacterial pattern recognition receptor NOD2 of basophils and microbicidal peptides in atopic dermatitis. Molecules. 2016; 21 (4): 471. doi: 10.3390/molecules21040471.
  25. Wong C.K., Leung T.F., Chu I.M. et al. Aberrant expression of regulatory cytokine IL-35 and pattern reco­gnition receptor NOD2 in patients with allergic asthma. Inflammation. 2015; 38: 348–360. doi: 10.1007/s10753-014-0038-4.
  26. Henckaerts L., Vermeire S. NOD2/CARD15 disease associations other than Crohn's disease. Inflamm. Bowel Dis. 2007; 13 (2): 235–241. doi: 10.1002/ibd.20066.
  27. Strober W., Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn's disease. Mucosal Immunol. 2011; 4 (5): 484–495. doi: 10.1038/mi.2011.29.
  28. Miceli-Richard C., Lesage S., Rybojad M. et al. CARD15 mutations in Blau syndrome. Nat. Genet. 2001; 29 (1): 19–20. doi: 10.1038/ng720.
  29. Wang X., Kuivaniemi H., Bonavita G. et al. CARD15 mutations in familial granulomatosis syndromes: a study of the original Blau syndrome kindred and other families with large-vessel arteritis and cranial neuropathy. Arthritis Rheum. 2002; 46 (11): 3041–3045. doi: 10.1002/art.10618.
  30. Elmaagacli A.H., Koldehoff M., Hindahl H. et al. Mutations in innate immune system NOD2/CARD 15 and TLR-4 (Thr399Ile) genes influence the risk for severe acute graft-versus-hostdisease in patients who underwent an allogeneic transplantation. Transplantation. 2006; 81 (2): 247–254. doi: 10.1097/01.tp.0000188671.94646.16.
  31. Holler E., Rogler G., Herfarth H. et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-relatedmortality and GvHD following alloge­neic stem cell transplantation. Blood. 2004; 104 (3): 889–894. doi: 10.1182/blood-2003-10-3543.
  32. Kurzawski G., Suchy J., Kładny J. et al. The NOD2 3020insC mutation and the risk of colorectal cancer. Cancer Res. 2004; 64 (5): 1604–1606. doi: 10.1158/0008-5472.CAN-03-3791.
  33. Spanou E., Kalisperati P., Pateras I.S. et al. Genetic variability as a regulator of TLR4 and NOD signa­ling in response to bacterial driven DNA Damage Response (DDR) and inflammation: Focus on the gastrointestinal (GI) tract. Front. Genet. 2017; 96 (1): 5889. doi: 10.3389/fgene.2017.00065.
  34. Liu J., He C., Xu Q. et al. NOD2 polymorphisms associated with cancer risk: a meta-analysis. PLoS ONE. 2014; 9 (2): 89340. doi: 10.1371/journal.pone.0089340.
  35. Hnatyszyn A., Szalata M., Stanczyk J. et al. Association of c.802C> polymorphism of NOD2/CARD15 gene with the chronic gastritis and predisposition to cancer in H. pylori infected patients. Exp. Mol. Pathol. 2010; 88: 388–393. doi: 10.1016/j.yexmp.2010.03.003.
  36. Lener M.R., Oszutowska D., Castaneda J. et al. Prevalence of the NOD2 3020insC mutation in aggregations of breast and lung cancer. Breast Cancer Res. 2006; 95: 141–145. doi: 10.1007/s10549-005-9057-z.
  37. Mayerle J., den Hoed C.M., Schurmann C. et al. Identification of genetic loci associated with Helicobacter pylori serologic status. JAMA. 2013; 309: 1912–1920. doi: 10.1001/jama.2013.4350.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2019 Kazumian M.A., Vasilenok A.V., Teplyakova E.D.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».