The link of smoke and solar activity with human neoplasms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A review of the literature on the link of various types of smoke and solar activity with human neoplasms is presented. The significance of benign and malignant neoplasms in young children aged 0–4 years as an indicator of carcinogenic effects on the population is shown. Information about the oncogenic potential of all types of smoke, including exhaust gases, tobacco smoke and smoke from forest fires is provided. The special danger of vehicle exhaust gases is indicated in connection with the content of benzene, which is a proven human carcinogen. There is extensive evidence linking various types of smoke with the development of leukemia, Hodgkin's lymphoma, non-Hodgkin's lymphomas, multiple myeloma, retinoblastoma, neuroblastoma, hepatoblastoma, hemangiomas, and tumors of the central nervous system. Data on the connection between solar activity, in particular ultraviolet radiation, and the risk of leukemia, lymphomas as well as such neoplasms in young children aged 0–4 years as nephroblastoma, hemangioma, benign tumors and soft tissue sarcomas are highlighted. The possible role of geomagnetic field fluctuations in the genesis of hemoblastoses in children and adults is considered. The importance of ecologically determined oxidative stress in the realization of the oncogenic potential of environmental factors is shown. Possible measures for the prevention of neoplasms by reducing the intensity of human exposure to environmental factors, as well as methods for stopping oxidative stress, are considered. Recommendations on increasing the effectiveness of antioxidant protection by stimulating autophagy through the introducing various plant components, alkylcatechols into the diet, and correcting immunodeficiency with transfer factor are given.

About the authors

Sergey K. Pinaev

Far Eastern State Medical University

Author for correspondence.
Email: pinaev@mail.ru
ORCID iD: 0000-0003-0774-2376
Scopus Author ID: 56291097200
ResearcherId: J-5942-2018

M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Oncology with a course of surgery and endoscopy of additional postgraduate education

Russian Federation, Khabarovsk, Russia

Alexey Ya. Chizhov

Peoples' Friendship University of Russia

Email: ma21@mail.ru
ORCID iD: 0000-0003-0542-1552
SPIN-code: 6701-2688
Scopus Author ID: 57205541090
ResearcherId: L-6981-2016

M.D., D. Sci. (Med.), Prof., Depart. of Human Ecology and Bioelementology, Institute of Ecology

Russian Federation, Moscow, Russia

Olga G. Pinaeva

Far Eastern State Medical University

Email: pinaeva_og@mail.ru
ORCID iD: 0000-0001-9676-845X
SPIN-code: 1678-3743
Scopus Author ID: 56290752700
ResearcherId: AAC-3445-2020

M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Normal and Pathological Physiology

Russian Federation, Khabarovsk, Russia

References

  1. Pinaev SK, Chizhov AYa, Pinaeva OG. Critical periods of adaptation to smoke and solar activity in human ontogenesis: a review. Ekologiya cheloveka. 2021;(11):4–11. (In Russ.) doi: 10.33396/1728-0869-2021-11-4-11.
  2. IARC Monographs on the identification of carcinogenic hazards to humans. List of Classifications. Agents classified by the IARC Monographs. Vol. 1–131. https://monographs.iarc.fr/list-of-classifications (accessed date: 09.04.2022).
  3. Straif K, Cohen F, Samet J-P, editors. Air pollution and cancer (IARC Scientific Publications; 161). http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013 (accessed date: 09.09.2021).
  4. Jin MW, Xu SM, An Q, Wang P. A review of risk factors for childhood leukemia. Eur Rev Med Pharmacol Sci. 2016;(18):3760–3764. PMID: 27735044.
  5. ONCOLOGY.RU. Malignant neoplasms in Russia. http://www.oncology.ru/service/statistics/malignant_tumors/ (access date: 07.01.2022). (In Russ.)
  6. Federal State Statistics Service. Transport in Russia. Issues of previous years. Transport in Russia 2003. https://rosstat.gov.ru/storage/mediabank/TRANSP.ZIP (access date: 12.05.2022). (In Russ.)
  7. Federal State Statistics Service. Number of own cars per 1000 population (since 2000). https://rosstat.gov.ru/storage/mediabank/%D0%9E%D0%B1%D0%B5%D1%81%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%8C%20%D0%BB%D0%B5%D0%B3%D0%BA%D0%BE%D0%B2%D1%8B%D0%BC%D0%B8%20%D0%B0%D0%B2%D1%82%D0%BE(1).xls (access date: 12.05.2022). (In Russ.)
  8. Infante PF. Residential proximity to gasoline stations and risk of childhood leukemia. Am J Epidemiol. 2017;185(1):1–4. doi: 10.1093/aje/kww130.
  9. McKenzie LM, Allshouse WB, Byers TE, Bedrick EJ, Serdar B, Adgate JL. Childhood hematologic cancer and residential proximity to oil and gas development. PLoS One. 2017;12(2):e0170423. doi: 10.1371/journal.pone.0170423.
  10. Friesen MC, Bassig BA, Vermeulen R, Shu XO, Purdue MP, Stewart PA, Xiang YB, Chow WH, Ji BT, Yang G, Linet MS, Hu W, Gao YT, Zheng W, Rothman N, Lan Q. Evaluating exposure-response associations for non-Hodg¬kin lymphoma with varying methods of assigning cumulative benzene exposure in the Shanghai Women's Health Study. Ann Work Expo Health. 2017;61(1):56–66. doi: 10.1093/annweh/wxw009.
  11. Andreotti G, Katz M, Hoering A, Van Ness B, Crowley J, Morgan G, Hoover RN, Baris D, Durie B. Risk of multiple myeloma in a case-spouse study. Leuk Lymphoma. 2016;57(6):1450–1459. doi: 10.3109/10428194.2015.1094693.
  12. Montero-Montoya R, López-Vargas R, Arellano-Agui¬lar O. Volatile organic compounds in air: Sources, distribution, exposure and associated illnesses in children. Ann Glob Health. 2018;84(2):225–238. doi: 10.29024/aogh.910.
  13. Volk J, Heck JE, Schmiegelow K, Hansen J. Parental occupational exposure to diesel engine exhaust in relation to childhood leukaemia and central nervous system cancers: a register-based nested case-control study in Denmark 1968–2016. Occup Environ Med. 2019;76(11):809–817. doi: 10.1136/oemed-2019-105847.
  14. Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. Reti¬noblastoma and ambient exposure to air toxics in the perinatal period. J Expo Sci Environ Epidemiol. 2015;25(2):182–186. doi: 10.1038/jes.2013.84.
  15. Ramis R, Tamayo-Uria I, Gómez-Barroso D, López-Abente G, Morales-Piga A, Pardo Romaguera E, Aragonés N, García-Pérez J. Risk factors for central nervous system tumors in children: New findings from a case-control study. PLoS One. 2017;12(2):e0171881. doi: 10.1371/journal.pone.0171881.
  16. Kehm RD, Spector LG, Poynter JN, Vock DM, Osy¬puk TL. Socioeconomic status and childhood cancer incidence: A population-based multilevel analysis. Am J Epidemiol. 2018;187(5):982–991. doi: 10.1093/aje/kwx322.
  17. Shmuel S, White AJ, Sandler DP. Residential exposure to vehicular traffic-related air pollution during childhood and breast cancer risk. Environ Res. 2017;159:257–263. doi: 10.1016/j.envres.2017.08.015.
  18. Azary S, Ganguly A, Bunin GR, Lombardi C, Park AS, Ritz B, Heck JE. Sporadic retinoblastoma and parental smoking and alcohol consumption before and after conception: A report from the Children's Oncology Group. PLoS One. 2016;11(3):e0151728. doi: 10.1371/journal.pone.0151728.
  19. Taborelli M, Montella M, Libra M, Tedeschi R, Crispo A, Grimaldi M, Dal Maso L, Serraino D, Polesel J. The dose-response relationship between tobacco smoking and the risk of lymphomas: a case-control study. BMC Cancer. 2017;17(1):421. doi: 10.1186/s12885-017-3414-2.
  20. Chizhov AYa, Pinaev SK, Pinaeva OG. System analysis of linkages between fo¬rest fires's smoke and tumors of the central nervous system in children. Tekhnologii zhivykh sistem. 2019;(1):53–58. (In Russ.) doi: 10.18127/j20700997-201901-06.
  21. Pinaev SK, Chizhov AYa. System analysis of the effect of Solar radiation and forest fire smoke on the risk of malignant neoplasms development in children. Advances in Molecular Oncology. 2018;5(S4):9. (In Russ.)
  22. Chizhov AYa, Pinaev SK. Effects of solar radiation and woodsmoke on risk of childhood leukaemia: system analysis. Radiation and Risk. 2018;27(4):87–94. (In Russ.) doi: 10.21870/0131-3878-2018-27-4-87-94.
  23. Pinaev SK, Chizhov AYa. Impact of solar activity and the wildfire smoke on the risk of embryonal tumors in young children. Radiation and Risk. 2020;29(1):68–78. (In Russ.) doi: 10.21870/0131-3878-2020-29-1-68-78.
  24. Pinaev SK, Chizhov AYa. Alternative oncogenesis. System dynamics of environmental factors in neoplasms in children. Advances in Molecular Oncology. 2018;5(S4):18–19. (In Russ.)
  25. Sergentanis TN, Zagouri F, Tsilimidos G, Tsagianni A, Tseliou M, Dimopoulos MA, Psaltopoulou T. Risk factors for multiple myeloma: A systematic review of meta-analyses. Clin Lymphoma Myeloma Leuk. 2015;15(10):563–577.e1–3. doi: 10.1016/j.clml.2015.06.003.
  26. Wong KY, Tai BC, Chia SE, Kuperan P, Lee KM, Lim ST, Loong S, Mow B, Ng SB, Tan L, Tan SY, Tan SH, Tao M, Wong A, Wong GC, Seow A. Sun exposure and risk of lymphoid neoplasms in Singapore. Cancer Causes Control. 2012;23(7):1055–1064. doi: 10.1007/s10552-012-9974-1.
  27. Merrill RM, Frutos AM. Ecological evidence for lower risk of lymphoma with greater exposure to sunlight and higher altitude. High Alt Med Biol. 2020;21(1):37–44. doi: 10.1089/ham.2019.0054.
  28. Van Leeuwen MT, Turner JJ, Falster MO, Mea¬gher NS, Joske DJ, Grulich AE, Giles GG, Vajdic CM. Latitude gradients for lymphoid neoplasm subtypes in Australia support an association with ultraviolet radiation exposure. Int J Cancer. 2013;133(4):944–951. doi: 10.1002/ijc.28081.
  29. Howell JM, Auer-Grzesiak I, Zhang J, Andrews CN, Stewart D, Urbanski SJ. Increasing incidence rates, distribution and histological characteristics of primary gastrointestinal non-Hodgkin lymphoma in a North American po¬pulation. Can J Gastroenterol. 2012;26(7):452–456. doi: 10.1155/2012/480160.
  30. Bowen EM, Pfeiffer RM, Linet MS, Liu WT, Weisenburger DD, Freedman DM, Cahoon EK. Relationship between ambient ultraviolet radiation and Hodgkin lymphoma subtypes in the United States. Br J Cancer. 2016;114(7):826–831. doi: 10.1038/bjc.2015.383.
  31. Dimitrov BD. Non-Hodgkin's lymphoma in US children: biometeorological approach. Folia Med (Plovdiv). 1999;41(1):29–33. PMID: 10462916.
  32. Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front Public Health. 2019;(7):223. doi: 10.3389/fpubh.2019.00223.
  33. Wyde M, Cesta M, Blystone C, Elmore S, Foster P, Hooth M, Kissling G, Malarkey D, Sills R, Stout M, Wal¬ker N, Witt K, Wolfe M, Bucher J. Report of partial fin¬dings from the National Toxicology Program carcinogenesis studies of cell phone radiofrequency radiation in Hsd: Sprage Dawley SD rats (whole body exposure). BioRxiv. 2018;055699. Preprint. doi: 10.1101/055699.
  34. Yang M, Guo W, Yang C, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G. Mobile phone use and glioma risk: A systematic review and meta-analysis. PLoS One. 2017;12(5):e0175136. doi: 10.1371/journal.pone.0175136.
  35. Bono R, Bellisario V, Tassinari R, Squillacioti G, Manetta T, Bugiani M, Migliore E, Piccioni P. Bisphenol A, tobacco smoke, and age as predictors of oxidative stress in children and adolescents. Int J Environ Res Public Health. 2019;16(11):pii E2025. doi: 10.3390/ijerph16112025.
  36. Rabha R, Ghosh S, Padhy PK. Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks. Ecotoxi¬col Environ Saf. 2018;165:393–403. doi: 10.1016/j.ecoenv.2018.09.014.
  37. Consales C, Cirotti C, Filomeni G, Panatta M, Butera A, Merla C, Lopresto V, Pinto R, Marino C, Benassi B. Fifty-hertz magnetic field affects the epigenetic mo-dulation of the miR-34b/c in neuronal cells. Mol Neurobiol. 2018;55(7):5698–5714. doi: 10.1007/s12035-017-0791-0.
  38. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer. 2018;18(8):471–484. doi: 10.1038/s41568-018-0015-6.
  39. Qian Q, Chen W, Cao Y, Cao Q, Cui Y, Li Y, Wu J. Targeting reactive oxygen species in cancer via Chinese herbal medicine. Oxid Med Cell Longev. 2019;2019:9240426. doi: 10.1155/2019/9240426.
  40. Senger DR, Li D, Jaminet SC, Cao S. Activation of the Nrf2 cell defense pathway by ancient foods: Disease prevention by important molecules and microbes lost from the modern western diet. PLoS One. 2016;11(2):e0148042. doi: 10.1371/journal.pone.0148042.
  41. Pinaeva OG, Lebed’ko OA, Yakovenko DV, Timoshin SS, Pinaev SK, Sazonova EN. Effects of antenatal hypoxia on the parameters of tissue homeostasis in the liver of albino rats. Bull Exp Biol Med. 2014;157(3):327–329. (In Russ.) doi: 10.1007/s10517-014-2557-2.
  42. Pinaeva OG, Lebed'ko OA, Pinaev SK, Sazonova EN. The effect of neonatal administration of dalargin on morphometric indexes of hepatocytes and free radicals oxidation in albino rats exposed to hypoxia. Dalnevostochnyy meditsinskiy zhurnal. 2017(3):67–71. (In Russ.)
  43. Pinaeva OG, Lebed'ko OA, Pinaev SK, Sazonova EN. Hepatoprotective Effect of Neonatal Administration of Non-Opioid Leu-Enkephalin Analogue in Adult Albino Rats Subjected to Antenatal Hypoxia. Bull Exp Biol Med. 2019;167(4):428–431. (In Russ.) doi: 10.1007/s10517-019-04542-9.
  44. Breda CNS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol. 2019;26:101255. doi: 10.1016/j.redox.2019.101255.
  45. Martínez-Torres AC, Reyes-Ruiz A, Calvillo-Rodriguez KM, Alvarez-Valadez KM, Uscanga-Palomeque AC, Tamez-Guerra RS, Rodríguez-Padilla C. -IMMUNEPOTENT CRP induces DAMPS release and ROS-dependent autophagosome formation in HeLa and MCF-7 cells. BMC Cancer. 2020;20(1):647. doi: 10.1186/s12885-020-07124-5.
  46. Pinaev SK, Pinaeva OG, Chizhov AYa. Transfer factor as a component of esophageal cancer treatment. Tekhnologii zhivykh sistem. 2014(4):59–62. (In Russ.)
  47. Andersen A, Vieira-Brock PL, Vaughan B, Vollmer D. Method development for the analysis of PBMC-¬mediated killing of K562 cells by bovine colostrum. J Immunol Methods. 2021;499:113175. doi: 10.1016/j.jim.2021.113175.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2022 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».