Oxaloacetate: signaling molecule, molecular mechanisms of interaction, prospects for clinical application
- Authors: Kolotyeva N.A.1, Gilmiyarova F.N.1, Gusyakova O.A.1, Sharafutdinova I.A.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 103, No 3 (2022)
- Pages: 484-491
- Section: Reviews
- URL: https://bakhtiniada.ru/kazanmedj/article/view/105024
- DOI: https://doi.org/10.17816/KMJ2022-484
- ID: 105024
Cite item
Full Text
Abstract
Small molecules make up a majority of cellular molecules, their intracellular concentrations vary over a wide range, and they are involved in a multifarious molecular transformations. However, there is not enough information about how small molecules regulate protein functions through intermolecular binding, which creates an urgent need for fundamental research and the study of the metabolites’ role. Our attention was focused on small molecules located at the intersection point of metabolic pathways of proteins, fats, carbohydrates, the structural and functional potential of which provides numerous biomolecular processes. The intermediates availability can regulate energy and intermediate metabolism, cellular redox potential, and production of adenosine triphosphate, determining the direction of metabolism that is priority for the cell at this point in time. Of particular interest in the study of metabolite-protein interactions are those studies that can reveal new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. The review is devoted to the study of the role of the small molecule oxaloacetate and malate, as well as malate dehydrogenase involved in their transformations, the activity of which can be used as a diagnostic marker in oncological and neurodegenerative diseases. Oxaloacetate has protective and promitochondrial effects, it serves as a neuroprotector, prevents inflammation and neurodegeneration. The penetration of oxaloacetate through the blood-brain barrier into the central nervous system was established, which became a prerequisite for conducting preclinical trials of drugs containing it in models of Alzheimer's disease and ischemic stroke.
Full Text
##article.viewOnOriginalSite##About the authors
Nataliya A. Kolotyeva
Samara State Medical University
Author for correspondence.
Email: n.a.koloteva@samsmu.ru
ORCID iD: 0000-0002-7853-6222
M.D., D. Sci. (Med.), Prof., Depart. of Fundamental and Clinical Biochemistry with Laboratory Diagnostics
Russian Federation, Samara, RussiaFrida N. Gilmiyarova
Samara State Medical University
Email: kaf_biohim@samsmu.ru
ORCID iD: 0000-0001-5992-3609
M.D., D. Sci. (Med.), Prof., Depart. of Fundamental and Clinical Biochemistry with Laboratory Diagnostics
Russian Federation, Samara, RussiaOksana A. Gusyakova
Samara State Medical University
Email: o.a.gusyakova@samsmu.ru
ORCID iD: 0000-0002-5619-4583
M.D., D. Sci. (Med.), Assoc. Prof., Head, Depart. of Fundamental and Clinical Biochemistry with Laboratory Diagnostics
Russian Federation, Samara, RussiaIrina A. Sharafutdinova
Samara State Medical University
Email: kaf_biohim@samsmu.ru
ORCID iD: 0000-0001-7314-0221
student
Russian Federation, Samara, RussiaReferences
- Wang W, Karamanlidis G, Tian R. Novel targets for mitochondrial medicine. Sci Transl Med. 2016;8:326. doi: 10.1126/scitranslmed.aac7410.
- Gilmiyarova FN, Kolotyeva NA, Kuzmicheva VI, Remizov VV, Gusyakova OA. Novel approach to protein-protein interaction assessment. IOP Conf Ser Earth Environ Sci. 2020;548:072046. doi: 10.1088/1755-1315/548/7/072046.
- Li X, Wang X, Snyder M. Systematic investigation of protein-small molecule interactions. IUBMB Life. 2013;65(1):2–8. doi: 10.1002/iub.1111.
- Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Picotti P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell. 2018;172(1–2):358.e23–372.e23. doi: 10.1016/j.cell.2017.12.006.
- Koloteva NA, Potekhina VI, Gorbacheva IV, Kozlov AV. Lactate: Is there a stalemate of metabolism? Eruditio Juvenium. 2016;(1):28–32. (In Russ.)
- Gilmiyarova F, Kolotyeva N, Radomskaya V, Gusyakova O, Gorbacheva I, Potekhina V. Role of the metabolic minor components in the regulation of intermolecular interaction. J Biosci Med. 2016;4:28–35. doi: 10.4236/jbm.2016.47004.
- Wang Y, Huang Y, Yang J. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res. 2018;5(1):13. doi: 10.1186/s40779-018-0160-y.
- Campos F, Sobrino T, Ramos-Cabrer P, Castillo J. Oxaloacetate: A novel neuroprotective for acute ischemic stroke. Int J Biochem Cell Biol. 2012;44:262–265. doi: 10.1016/j.biocel.2011.11.003.
- Pesi R, Balestri F, Ipata PL. Metabolic interaction between urea cycle and citric acid cycle shunt: A guided approach. Biochem Mol Biol Educ. 2018;46(2):182–185. doi: 10.1002/bmb.21099.
- Nelson DL, Cox MM, Lehninger AL. Lehninger principles of biochemistry. 6th ed. NY: W.H. Freeman and Company; 2013. 1336 p.
- Wood HG, Werkman CH. The utilization of CO2 by the propionoc acid bacteria in the dissimilation of glycerol. Biochem J. 1935;30:332. doi: 10.1042/bj0300048.
- Mazelis M, Vennesland B. Carbon dioxide fixation into oxalacetate in hgher plants. Plant Physiol. 1957;32(6):591–600. doi: 10.1104/pp.32.6.591.
- Ogston AG. Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature. 1948;162:963. doi: 10.1038/162963b0.
- Ferraris DM, Spallek R, Oehlmann W, Singh M, Rizzi M. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis. Proteins. 2015;83:389–394. doi: 10.1002/prot.24743.
- Easlon E, Tsang F, Skinner C, Wang C, Lin SJ The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev. 2008;22:931–944. doi: 10.1101/gad.1648308.
- Williams DS, Cash A, Hamadani L, Diemer T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell. 2009;8:765. doi: 10.1111/j.1474-9726.2009.00527.x.
- Edwards CB, Copes N, Brito AG, Canfield J, Bradshaw PC. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS ONE. 2013;8(3):e58345 doi: 10.1371/journal.pone.0058345.
- Yamamoto HA, Mohanan PV. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Toxicol Lett. 2003;143:115–122. doi: 10.1016/s0378-4274(03)00114-0.
- Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C, Stevenson D, Tumanov S, Bulusu V, Kamphorst JJ, Vazquez A, Fleming S, Schiavi F, Kalna G, Blyth K, Strathdee D, Gottlieb E. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol. 2015;17(10):1317–1326. doi: 10.1038/ncb3233.
- Moffatt BA, Ashihara H. Purine and pyrimidine nucleotide synthesis and metabolism. The Arabidopsis Book. 2002:1:e0018. doi: 10.1199/tab.0018.
- Finisterer J. Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol. 2008;39(4):223–235. doi: 10.1016/j.pediatrneurol.2008.07.013.
- Armstrong R, Greenhalgh KL, Rattenberry E, Judd B, Shukla R, Losty PD, Maher ER. Succinate dehydrogenase subunit B (SDHB) gene deletion associated with a composite paraganglioma/neuroblastoma. J Med Genet. 2009;46(3):215–216. doi: 10.1136/jmg.2008.060749.
- Her YF, Maher LJ. Succinate dehydrogenase loss in familial paraganglioma: Biochemistry, genetics, and epigenetics. Int J Endocrinol. 2015:296167. doi: 10.1155/2015/296167.
- Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, Van Remmen H. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J. 2008;409(2):491–499. doi: 10.1042/BJ20071162.
- Qiang F. Effect of malate-oligosaccharide solution on antioxidant capacity of endurance athletes. Open Biomed Eng J. 2015;9:326–329. doi: 10.2174/1874120701509010326.
- Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130(6):1095–1107. doi: 10.1016/j.cell.2007.07.035.
- Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem. 2007;282(45):32844–32855. doi: 10.1074/jbc.M706127200.
- Springsteen G, Yerabolu JR, Nelson J, Rhea CJ, Krishnamurthy R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat Commun. 2018;9(1):91. doi: 10.1038/s41467-017-02591-0.
- Mydy LS, Cristobal JR, Katigbak RD, Bauer P, Reyes AC, Kamerlin SCL, Richard JP, Gulick AM. Human glycerol 3-phosphate dehydrogenase: X-ray crystal structures that guide the interpretation of mutagenesis studies. Biochemistry. 2019;58(8):1061–1073. doi: 10.1021/acs.biochem.8b01103.
- González JM, Marti-Arbona R, Chen JCH, Broom-Peltz B, Unkefer CJ. Conformational changes on substrate binding revealed by structures of Methylobacterium extorquens malate dehydrogenase. Acta Crystallogr F Struct Biol Commun. 2018;74(10):610–616. doi: 10.1107/S2053230X18011809.
- Dasika SK, Vinnakota KC, Beard DA. Determination of the catalytic mechanism for mitochondrial malate dehydrogenase. Biophys J. 2015;108(2):408–419. doi: 10.1016/j.bpj.2014.11.3467.
- Abbrescia DI, La Piana G, Lofrumento NE. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems. Arch Biochem Biophys. 2012;518(2):157–163. doi: 10.1016/j.abb.2011.12.021.
- Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, Yu X. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. J Theor Biol. 2008;254(2):466–475. doi: 10.1016/j.jtbi.2008.05.033.
- Jespersen NR, Yokota T, Støttrup NB, Bergdahl A, Paelestik KB, Povlsen JA, Dela F, Bøtker HE. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia-reperfusion. J Physiol. 2017;595(12):3765–3780. doi: 10.1113/JP273408.
- Wang C, Chen H, Zhang J, Hong Y, Ding X, Ying W. Malate-aspartate shuttle mediates the intracellular ATP levels, antioxidation capacity and survival of differentiated PC12 cells. Int J Physiol Pathophysiol Pharmacol. 2014;6(2):109–114.
- Pardo B, Contreras L, Satrústegui J. De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate-glutamate carrier aralar/AGC1. Front Endocrinol (Lausanne). 2013;4:149. doi: 10.3389/fendo.2013.00149.
- Adipose tissue and obesity. Part 1: fat cell size and fat cell number. Fortschr Med. 1978;96(34):1693–1696. (In German.)
- Ren JG, Seth P, Clish CB, Lorkiewicz PK, Higashi RM, Lane AN, Fan TW, Sukhatme VP. Knockdown of malic enzyme 2 suppresses lung tumor growth, induces differentiation and impacts PI3K/AKT signaling. Sci Rep. 2014;4:5414. doi: 10.1038/srep05414.
- Lu YX, Ju HQ, Liu ZX, Chen DL, Wang Y, Zhao Q, Wu QN, Zeng ZL, Qiu HB, Hu PS, Wang ZQ, Zhang DS, Wang F, Xu RH. ME1 regulates NADPH homeostasis to promote gastric cancer growth and metastasis. Cancer Res. 2018;78(8):1972–1985. doi: 10.1158/0008-5472.CAN-17-3155.
- New M, Van Acker T, Sakamaki JI, Jiang M, Saunders RE, Long J, Wang VM, Behrens A, Cerveira J, Sudhakar P, Korcsmaros T, Jefferies HBJ, Ryan KM, Howell M, Tooze SA. MDH1 and MPP7 regulate autophagy in pancreatic ductal adenocarcinoma. Cancer Res. 2019;79(8):1884–1898. doi: 10.1158/0008-5472.CAN-18-2553.
- Ait-El-Mkadem S, Dayem-Quere M, Gusic M, Chaussenot A, Bannwarth S, François B, Genin EC, Fragaki K, Volker-Touw CLM, Vasnier C, Serre V, van Gassen KLI, Lespinasse F, Richter S, Eisenhofer G, Rouzier C, Mochel F, De Saint-Martin A, Abi Warde MT, de Sain-van der Velde MGM, Jans JJM, Amiel J, Avsec Z, Mertes C, Haack TB, Strom T, Meitinger T, Bonnen PE, Taylor RW, Gagneur J, van Hasselt PM, Rötig A, Delahodde A, Prokisch H, Fuchs SA, Paquis-Flucklinger V. Mutations in MDH2, encoding a Krebs cycle enzyme, cause early-onset severe encephalopathy. Am J Hum Genet. 2017;100(1):151–159. doi: 10.1016/j.ajhg.2016.11.014.
- Zerr I, Villar-Piqué A, Schmitz VE, Poleggi A, Pocchiari M, Sánchez-Valle R, Calero M, Calero O, Baldeiras I, Santana I, Kovacs GG, Llorens F, Schmitz M. Evaluation of human cerebrospinal fluid malate dehydrogenase 1 as a marker in genetic prion disease patients. Biomolecules. 2019;9(12):800. doi: 10.3390/biom9120800.
- Gisak SN, Rudnev VI, Ivanova TR, Kolesnikova TM, Prohorenkova NV, Baranov DA, Gagloev VM, Yatuev MA. Biochemical studies in the diagnosis and prediction of the clinical course of acute hematogenous osteomyelitis in children. Nauchno-meditsinskiy vestnik Tsentral'nogo Chernozemya. 2008;(33):9–11. (In Russ.)
- Dovzhikova IV, Lutsenko MT. Activity of NADPh formation processes in placenta at the pregnancy complicated by an aggravation of herpetic infection. Yakut Medical Journal. 2009;(2):159–160. (In Russ.)
- Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, Rodríguez-González R, Brea D, Castillo J. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–1386. doi: 10.1038/jcbfm.2011.3.
- Wilkins HM, Harris JL, Carl SM, E L, Lu J, Eva Selfridge J, Roy N, Hutfles L, Koppel S, Morris J, Burns JM, Michaelis ML, Michaelis EK, Brooks WM, Swerdlow RH. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis. Hum Mol Genet. 2014;23(24):6528–6541. doi: 10.1093/hmg/ddu371.
- Swerdlow RH, Bothwell R, Hutfles L, Burns JM, Reed GA. Tolerability and pharmacokinetics of oxaloacetate 100 mg capsules in Alzheimer's subjects. BBA Clin. 2016;5:120–123. doi: 10.1016/j.bbacli.2016.03.005.
- Wilkins HM, Koppel S, Carl SM, Ramanujan S, Weidling I, Michaelis ML, Michaelis EK, Swerdlow RH. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure. J Neurochem. 2016;137(1):76–87. doi: 10.1111/jnc.13545.
- Tungtur SK, Wilkins HM, Rogers RS, Badawi Y, Sage JM, Agbas A, Jawdat O, Barohn RJ, Swerdlow RH, Nishimune H. Oxaloacetate treatment preserves motor function in SOD1G93A mice and normalizes select neuroinflammation-related parameters in the spinal cord. Sci Rep. 2021;11(1):11051. doi: 10.1038/s41598-021-90438-6.
- Ruban A, Malina KC, Cooper I, Graubardt N, Babakin L, Jona G, Teichberg VI. Combined treatment of an amyotrophic lateral sclerosis rat model with recombinant GOT1 and oxaloacetic acid: A novel neuroprotective treatment. Neurodegener Dis. 2015;15(4):233–242. doi: 10.1159/000382034.
- Dopico-López A, Pérez-Mato M, da Silva-Candal A, Iglesias-Rey R, Rabinkov A, Bugallo-Casal A, Sobrino T, Mirelman D, Castillo J, Campos F. Inhibition of endogenous blood glutamate oxaloacetate transaminase enhances the ischemic damage. Transl Res. 2021;230:68–81. doi: 10.1016/j.trsl.2020.10.004.
- Vidoni ED, Choi IY, Lee P, Reed G, Zhang N, Pleen J, Mahnken JD, Clutton J, Becker A, Sherry E, Bothwell R, Anderson H, Harris RA, Brooks W, Wilkins HM, Mosconi L, Burns JM, Swerdlow RH. Safety and target engagement profile of two oxaloacetate doses in Alzheimer's patients. Alzheimers Dement. 2021;17(1):7–17. doi: 10.1002/alz.12156.
- Xu J, Khoury N, Jackson CW, Escobar I, Stegelmann SD, Dave KR, Perez-Pinzon MA. Ischemic neuroprotectant PKCε restores mitochondrial glutamate oxaloacetate transaminase in the neuronal NADH shuttle after ischemic injury. Transl Stroke Res. 2020;11(3):418–432. doi: 10.1007/s12975-019-00729-4.
- Belenguer P, Duarte JMN, Schuck PF, Ferreira GC. Mitochondria and the brain: Bioenergetics and beyond. Neurotox Res. 2019;36(2):219–238. doi: 10.1007/s12640-019-00061-7.
- Angelbello AJ, Chen JL, Disney MD. Small molecule targeting of RNA structures in neurological disorders. Ann NY Acad Sci. 2020;1471(1):57–71. doi: 10.1111/nyas.14051.
Supplementary files
