The role of the HLA-G gene and its expression in the genesis of recurrent miscarriage

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review summarizes the results of modern foreign and domestic clinical studies that provide information on the importance of the main histocompatibility complex (HLA), in general, and the expression of non-classical HLA-G molecules on trophoblast cells, in particular, in the physiological course of early pregnancy. The HLA-G gene has central functions in the processing and presentation of antigen and inhibits the receptor of NK cells, which leads to a decrease in the immune response at the fetal-maternal interface and provides immune tolerance to the fetus from the maternal body. HLA-G expression is dependent on combinations of transcription factors, miRNAs, and environmental factors. Based on this, more than a hundred studies have been put into clarifying how HLA-G expression influences the development of pregnancy complications, such as recurrent pregnancy losses, in which immunological factors are believed to play a crucial role.

About the authors

Margarita O. Bakleycheva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: bakleicheva@gmail.com
ORCID iD: 0000-0002-0103-8583
Scopus Author ID: 57203248029

MD, junior research schientist of Department of obstetrics and perinatology

Russian Federation, 3, Mendeleevskaya Line, Saint Petersburg, 199034

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089

MD, Dr. Sci. (Med.)

Russian Federation, 3, Mendeleevskaya Line, Saint Petersburg, 199034

Tatyana E. Ivashchenko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: tivashchenko2011@mail.ru
ORCID iD: 0000-0002-8549-6505

PhD, Dr. Sci. (Biol.), Professor

Russian Federation, 3, Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Djurisic S, Hviid TV. HLA Class Ib molecules and immune cells in pregnancy and preeclampsia. Front Immunol. 2014;5:652. doi: 10.3389/fimmu.2014.00652
  2. Bakleicheva MO, Bespalova ON, Ivashchenko TE. Role of class I HLA (G, E, and C) expression in early reproductive losses. Obstetrics and Gynecology. 2020;(2):30−36. (In Russ.). doi: 10.18565/aig.2020.2.30-36
  3. Carosella ED, Ploussard G, LeMaoult J, Desgrandchamps F. A systematic review of immunotherapy in urologic cancer: Evolving roles for targeting of CTLA-PD-1/PD-L1, and HLA-G. Eur Urol. 2015;68(2):267−279. doi: 10.1016/j.eururo.2015.02.032
  4. Szekeres-Bartho J, Markert UR, Varla-Leftherioti M. Immunology in reproduction. J Reprod Immunol. 2015;108:1. doi: 10.1016/j.jri.2015.03.003
  5. de Wynter EA, Testa NG. Interest of cord blood stem cells. Biomed Pharmacother. 2001;55(4):195−200. doi: 10.1016/s0753-3322(01)00049-x
  6. Serova LD. Immunologicheskij HLA-status u zhenshhin s privychnym nevynashivaniem beremennosti: metodicheskie rekomendacii. Moscow, 1998. (In Russ.)
  7. Steinbrook R. The cord-blood-bank controversies. N Engl J Med. 2004;351(22):2255−2257. doi: 10.1056/NEJMp048283
  8. Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the interface of maternal-fetal tolerance. Trends Immunol. 2017;38:272–286. doi: 10.1016/j.it.2017.01.009
  9. Choudhury SR, Knapp LA. Human reproductive failure II: immunogenetic and interacting factors. Hum Reprod Update. 2001;7(2):135−160. doi: 10.1093/humupd/7.2.135
  10. Lorentzen DF, Iwanaga KK, Meuer KJ, et al. A 25% error rate in serologic typing of HLA-B homozygotes. Tissue Antigens. 1997;50(4):359−365. doi: 10.1111/j.1399-0039.1997.tb02888.x
  11. Komlos L, Zamir R, Joshua H, Halbrecht I. Common HLA antigens in couples with repeated abortions. Clin Immunol Immunopathol. 1977;7(3):330−335. doi: 10.1016/0090-1229(77)90066-6
  12. Christiansen OB, Ring M, Rosgaard A, et al. Association between HLA-DR1 and -DR3 antigens and unexplained repeated miscarriage. Hum Reprod Update. 1999;5(3):249−255. doi: 10.1093/humupd/5.3.249
  13. Dahl M, Klitkou L, Christiansen OB, et al. Human leukocyte antigen (HLA)-G during pregnancy part II: associations between maternal and fetal HLA-G genotypes and soluble HLA-G. Hum Immunol. 2015;76(4):260−271. doi: 10.1016/j.humimm.2015.01.015
  14. Plaks V, Rinkenberger J, Dai J, et al. Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. Proc Natl Acad Sci USA. 2013;110(27):11109−11114. doi: 10.1073/pnas.1309561110
  15. Zidi I, Rizzo R, Bouaziz A, et al. sHLA-G1 and HLA-G5 levels are decreased in Tunisian women with multiple abortion. Hum Immunol. 2016;77:342–345. doi: 10.1016/j.humimm.2016.01.019
  16. Ikeno M, Suzuki N, Kamiya M, et al. LINE1 family member is negative regulator of HLA-G expression. Nucleic Acids Res. 2012;40(21):10742−10752. doi: 10.1093/nar/gks874
  17. Bespalova O, Bakleicheva M, Ivashchenko T, et al. Expression of HLA-G and KIR2DL4 receptor in chorionic villous in missed abortion. Gynecol Endocrinol. 2020;36(Supp1):43−47. doi: 10.1080/09513590.2020.1816716
  18. Akhter A, Das V, Naik S, et al. Upregulation of HLA-G in JEG-3 cells by dexamethasone and hydrocortisone. Arch Gynecol Obstet. 2012;285(1):7−14. doi: 10.1007/s00404-011-1880-3
  19. Barrientos G, Toro A, Moschansky P, et al. Leptin promotes HLA-G expression on placental trophoblasts via the MEK/Erk and PI3K signaling pathways. Placenta. 2015;36(4):419−426. doi: 10.1016/j.placenta.2015.01.006
  20. Gregori S, Amodio G, Quattrone F, Panina-Bordignon P. HLA-G Orchestrates the early interaction of human trophoblasts with the maternal niche. Front Immunol. 2015;6:128. doi: 10.3389/fimmu.2015. 00128
  21. Wang X, Li B, Wang J, et al. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod Biomed Online. 2012;25(4):415−424. doi: 10.1016/j.rbmo.2012.06.022
  22. Wu ZS, Wang CQ, Xiang R, et al. Loss of miR-133a expression associated with poor survival of breast cancer and restoration of miR-133a expression inhibited breast cancer cell growth and invasion. BMC Cancer. 2012;12:51. doi: 10.1186/1471-2407-12-51
  23. Guo W, Fang L, Li B, et al. Decreased human leukocyte antigen-G expression by miR-133a contributes to impairment of proinvasion and proangiogenesis functions of decidual NK cells. Front Immunol. 2017;8:741. doi: 10.3389/fimmu.2017.00741
  24. Rokhafrooz S, Ghadiri A, Ghandil P, et al. Association between HLA-G 14bp gene polymorphism and serum sHLA-G protein concentrations in preeclamptic patients and normal pregnant women. Immunol Invest. 2018;47:558–568. doi: 10.1080/08820139.2018.1467925
  25. Alenichev AS, Nasyhova JuA, Ivashhenko EJe, Baranov VS. Harakteristika geneticheskoj struktury populjacii Severo-Zapadnogo regiona RF po genu HLA-G. Jekologicheskaja genetika. 2014;12(2):74−80. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the fetus, placenta, decidual tissue, and the functional significance of protein molecules of HLA-G expression. The rectangular inset indicates an enlarged view of the maternal-fetal interface showing the localization of trophoblast cell populations. Cytotrophoblast cells are precursors of differentiated trophoblast cell populations; extravillous trophoblast (EVT) cells express HLA-E, HLA-G, and possibly HLA-F on their surface; syncytiotrophoblast cells can express the soluble form of HLA-G protein molecules together with villous trophoblast cells. The arrows on the round inset indicate the interactions of HLA-G with various receptors on the cell surface, namely natural killer (NK) cells of the uterus, CD8+ T cells. ILT — immunoglobulin-like transcript [1]

Download (439KB)
3. Fig. 2. Scheme illustrating the hypothesis of the relationship between a decreased HLA-G gene expression and dysfunction of decidual natural killer (NK) dysfunction in recurrent miscarriage (recurrent fetal loss). Lower KIR2DL4 expression in decidual NK cells in patients with recurrent miscarriage may suppress the proinvasion and secretion of pro-angiogenic cytokines in these cells. Additionally, reduced HLA-G gene expression by miRNA-133a in the trophoblast cell line, HTR-8/SVneo, may affect the secretion capacity of decidual NK cells when bound to KIR2DL4. Decreased levels of cytokines may affect trophoblast invasion and angiogenesis. EVT — extravillous trophoblast cells; VEGF — vascular endothelial growth factor [23]

Download (231KB)
4. Fig. 3. The similarity of different populations for the G*0101–0107 alleles of the HLA-G gene. Clustering by Ward’s method using the Euclid distance measure [25]

Download (99KB)

Copyright (c) 2022 Eсо-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».