Sex differences in adipose tissue distribution. Predictors of sarcopenia

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The replacement of muscle tissue with fat plays the leading role in the development of sarcopenia against the background of weakening muscle function. Normally, the distribution of adipose tissue in the body has gender differences. The redistribution of fat deposits is noted with age under the influence of sex hormones: from the neonatal period, with changes in prepubertal and pubertal age, to changes in the premenopausal and climacteric periods. Racial and genetic characteristics also affect the excess deposition of visceral and subcutaneous fat. This literature review covers aspects of regulation of adipose tissue distribution in age and gender aspects, variants of pathological fat deposition, and possible health effects. Particular attention is paid to the genetic regulation of fat metabolism, the gene ERS1 (rs2175898), BDNF (rs6265), LEPR (rs1137101), FTO (rs9939609), AGT (rs4762 and rs699), FABP2 (rs179988), and only with the PPARG Pro/Pro locus were found to be associated with obesity. We discuss herein possible ways of modification of fat deposits in the human body under the influence of food stimulation, physical exercise and changes in the intestinal microbiome. These same ways are characteristic for preventing the development of sarcopenia in both the elderly and young people with secondary sarcopenia.

About the authors

Anna N. Zavyalova

Saint-Petersburg State Pediatric Medical University

Email: anzavjalova@mail.ru
ORCID iD: 0000-0002-9532-9698
SPIN-code: 3817-8267

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Saint Petersburg

Milena N. Yakovleva

Saint-Petersburg State Pediatric Medical University

Email: milena-yakovleva@bk.ru
ORCID iD: 0000-0001-8986-7599
SPIN-code: 1601-5595
Russian Federation, Saint Petersburg

Kseniya I. Smirnova

Saint-Petersburg State Pediatric Medical University

Email: aksinya2010@yandex.ru
ORCID iD: 0009-0007-8570-6772
SPIN-code: 4011-2223
Russian Federation, Saint Petersburg

Ivan A. Lisitsa

Saint-Petersburg State Pediatric Medical University

Email: ivan_lisitsa@mail.ru
ORCID iD: 0000-0003-3501-9660
SPIN-code: 4937-7071
Russian Federation, Saint Petersburg

Laura Dzh. Shogiradze

Children’s City Polyclinic No. 19

Email: laura-leona@yandex.ru
ORCID iD: 0000-0002-2909-9417
SPIN-code: 6206-8390
Russian Federation, Saint Petersburg

Valeriya P. Novikova

Saint-Petersburg State Pediatric Medical University

Author for correspondence.
Email: novikova-vp@mail.ru
ORCID iD: 0000-0002-0992-1709
SPIN-code: 1875-8137

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. EDN: OIPUXJ doi: 10.1093/ageing/afy169
  2. Zavyalova AN, Novikova VP, Yakovleva MN. Sarcopenia in children: lecture. Medical Council. 2024;(1):245–253. EDN: QRUCQT doi: 10.21518/ms2023-470
  3. Nishikawa H, Fukunishi S, Asai A, et al. Pathophysiology and mechanisms of primary sarcopenia (review). Int J Mol Med. 2021;48(2):156. EDN: CXJQBO doi: 10.3892/ijmm.2021.4989
  4. Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Facts. 2022;15(3):321–335. EDN: VHNMZB doi: 10.1159/000521241
  5. Pavlovskaya EV, Bagaeva ME, Zubovich AI, et al. Sarcopenic obesity in children: clinical significance, approaches to diagnostics and therapy. Issues of pediatric dietetics. 2023; 21(5):63–70. EDN: NLSQRK doi: 10.20953/1727-5784-2023-5-63-70
  6. Zavyalova AN, Troshkina ME, Shcherbak LA, et al. Sarcopenic obesity in children. Experimental and Clinical Gastroenterology. 2023;209(1):134–141. EDN: QPBUMC doi: 10.31146/1682-8658-ecg-209-1-134-141
  7. Wagenaar CA, Dekker LH, Navis GJ. Prevalence of sarcopenic obesity and sarcopenic overweight in the general population: The lifelines cohort study. Clin Nutr. 2021;40(6):4422–4429. EDN: RESKMZ doi: 10.1016/j.clnu.2021.01.005
  8. Gao Q, Mei F, Shang Y, et al. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin Nutr. 2021;40(7):4633–4641. EDN: WQCJLY doi: 10.1016/j.clnu.2021.06.009
  9. Keuper M, Jastroch M. The good and the BAT of metabolic sex differences in thermogenic human adipose tissue. Mol Cell Endocrinol. 2021;533:111337. EDN: XNHBJM doi: 10.1016/j.mce.2021.111337
  10. Pan R, Chen Y. Fat biology and metabolic balance: on the significance of sex. Mol Cell Endocrinol. 2021;533:111336. EDN: ERIWWL doi: 10.1016/j.mce.2021.111336
  11. Singh R, Barrios A, Dirakvand G, et al. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells. 2021;10(11):3030. EDN: JRABGP doi: 10.3390/cells10113030
  12. Frank AP, Palmer BF, Clegg DJ. Do estrogens enhance activation of brown and beiging of adipose tissues? Physiol Behav. 2018;187:2431. doi: 10.1016/j.physbeh.2017.09.026
  13. Kaikaew K, Grefhorst A, Visser JA. Sex differences in brown adipose tissue function: sex hormones, glucocorticoids, and their crosstalk. Front Endocrinol (Lausanne). 2021;12:652444. EDN: SHLRGE doi: 10.3389/fendo.2021.652444
  14. Law J, Bloor I, Budge H, et al. The influence of sex steroids on adipose tissue growth and function. Horm Mol Biol Clin Investig. 2014;19(1):13–24. doi: 10.1515/hmbci-2014-0015
  15. Quarta C, Mazza R, Pasquali R, et al. Role of sex hormones in modulation of brown adipose tissue activity. J Mol Endocrinol. 2012;49(1):R1–R7. doi: 10.1530/JME-12-0043
  16. Chella Krishnan K, Mehrabian M, Lusis AJ. Sex differences in metabolism and cardiometabolic disorders. Curr Opin Lipidol. 2018;29(5):404–410. EDN: LVEPFZ doi: 10.1097/MOL.0000000000000536
  17. Link JC, Reue K. Genetic basis for sex differences in obesity and lipid metabolism. Annu Rev Nutr. 2017;37:225–245. doi: 10.1146/annurev-nutr-071816-064827
  18. Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol Metab. 2018;15:35–44. doi: 10.1016/j.molmet.2018.04.003
  19. Link JC, Hasin-Brumshtein Y, Cantor RM, et al. Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics. 2017;18(1):89. EDN: NKLXZJ doi: 10.1186/s12864-017-3484-1
  20. Gavin KM, Bessesen DH. Sex differences in adipose tissue function. Endocrinol Metab Clin North Am. 2020;49(2):215–228. EDN: RXCEKJ doi: 10.1016/j.ecl.2020.02.008
  21. Williams CM. Lipid metabolism in women. Proc Nutr Soc. 2004;63(1):153–160. doi: 10.1079/PNS2003314
  22. Lindberger E, Sundström Poromaa I, Ahlsson F. Impact of maternal central adiposity on infant anthropometry and perinatal morbidity: a systematic review. Eur J Obstet Gynecol Reprod Biol X. 2020;8:100117. EDN: ZKOKOZ doi: 10.1016/j.eurox.2020.100117
  23. Novikova VP, Petrenko YuV, Ivanov DO, et al. Cytokine status of neonates born to obese mothers. Pediatric Nutrition. 2021;19(4):76–80. EDN: GSZGFB doi: 10.20953/1727-5784-2021-4-76-80
  24. Smirnova NN, Kuprienko NB, Novikova VP, et al. Molecular basis of obesity phenotypes. Pediatria named after G.N. Speransky. 2021;100(4):98–105. EDN: IUVKRU doi: 10.24110/0031-403X-2021-100-4-98-105
  25. Smirnova NN, Kuprienko NB, Petrenko YuV, et al. Maternal obesity and the mother–placenta–fetus system: evidence-based mechanisms of influence. Children’s Medicine of the North-West. 2021;9(3):31–39. EDN: ZZIDYA
  26. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care. 2001;4(6):499–502. doi: 10.1097/00075197-200111000-00006
  27. Blouin K., Boivin A., Tchernof A. Androgens and body fat distribution. J Steroid Biochem Mol Biol. 2008;108(3–5):272–280. doi: 10.1016/j.jsbmb.2007.09.001
  28. Ma W, Zhu H, Yu X, et al. Association between android fat mass, gynoid fat mass and cardiovascular and all-cause mortality in adults: NHANES 2003–2007. Front Cardiovasc Med. 2023;10:1055223. EDN: GFALWT doi: 10.3389/fcvm.2023.1055223
  29. Pasquali R, Vicennati V, Gambineri A, et al. Sex-dependent role of glucocorticoids and androgens in the pathophysiology of human obesity. Int J Obes (Lond). 2008;32(12):1764–1779. doi: 10.1038/ijo.2008.129
  30. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–119. doi: 10.1016/j.mce.2014.11.029
  31. Wake DJ, Strand M, Rask E, et al. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin Endocrinol (Oxf). 2007;66(3):440–446. doi: 10.1111/j.1365-2265.2007.02755.x
  32. Guclu-Geyik F, Coban N, Can G, et al. The rs2175898 polymorphism in the ESR1 gene has a significant sex-specific effect on obesity. Biochem Genet. 2020;58(6):935–952. EDN: GKPUSU doi: 10.1007/s10528-020-09987-6
  33. Haque N, Tischkau SA. Sexual dimorphism in adipose-hypothalamic crosstalk and the contribution of aryl hydrocarbon receptor to regulate energy homeostasis. Int J Mol Sci. 2022;23(14):7679. EDN: TIUXEO doi: 10.3390/ijms23147679
  34. Evdokimova NV, Shogiradze LD, Pokhlebkina AA, et al. Genetic determinants of obesity in adolescent girls. Russian Bulletin of Perinatology and Pediatrics. 2024;69(2):65–71. EDN: EHCPAK doi: 10.21508/1027-4065-2024-69-2-65-71
  35. Escobar-Morreale HF, Alvarez-Blasco F, Botella-Carretero JI, et al. The striking similarities in the metabolic associations of female androgen excess and male androgen deficiency. Hum Reprod. 2014;29(10):2083–2091. doi: 10.1093/humrep/deu198
  36. Giagulli VA, Castellana M, Pelusi C, et al. Androgens, Body composition, and their metabolism based on sex. Front Horm Res. 2019;53:18–32. doi: 10.1159/000494900
  37. Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes. 2021;12(10):1622–1654. EDN: TLBBKI doi: 10.4239/wjd.v12.i10.1622
  38. Jensen MD. Androgen effect on body composition and fat metabolism. Mayo Clin Proc. 2000;75(Suppl):S65–S68.
  39. Dieudonne MN, Pecquery R, Leneveu MC, et al. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology. 2000;141(2):649–656. doi: 10.1210/endo.141.2.7293
  40. Anderson LA, McTernan PG, Barnett AH, et al. The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: influence of gender and site. J Clin Endocrinol Metab. 2001;86(10):5045–5051. doi: 10.1210/jcem.86.10.7955
  41. Tchernof A, Després JP. Sex steroid hormones, sex hormone-binding globulin, and obesity in men and women. Horm Metab Res. 2000;32(11–12):526–536. doi: 10.1055/s-2007-978681
  42. Perry AC, Martin L. Race differences in obesity and its relationship to the sex hormone milieu. Horm Mol Biol Clin Investig. 2014;19(3):151–161. doi: 10.1515/hmbci-2014-0004
  43. Eaton SA, Sethi JK. Immunometabolic links between estrogen, adipose tissue and female reproductive metabolism. Biology (Basel). 2019;8(1):8. doi: 10.3390/biology8010008
  44. McCormack SE, Blevins JE, Lawson EA. Metabolic effects of oxytocin. Endocr Rev. 2020;41(2):121–145. doi: 10.1210/endrev/bnz012
  45. Tchoukalova YD, Votruba SB, Tchkonia T, et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA. 2010;107(42):18226–18231. doi: 10.1073/pnas.1005259107
  46. Nielsen TL, Hagen C, Wraae K, et al. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. J Clin Endocrinol Metab. 2007;92(7):2696–2705. doi: 10.1210/jc.2006-1847
  47. Liu X, Bai Y, Cui R, et al. Sus_circPAPPA2 regulates fat deposition in castrated pigs through the miR-2366/GK pathway. Biomolecules. 2022;12(6):753. EDN: TVLOFS doi: 10.3390/biom12060753
  48. Pasquali R. Obesity and androgens: facts and perspectives. Fertil Steril. 2006;85(5):1319–1340. doi: 10.1016/j.fertnstert.2005.10.054
  49. Kim C, Dabelea D, Kalyani RR, et al. Changes in visceral adiposity, subcutaneous adiposity, and sex hormones in the diabetes prevention program. J Clin Endocrinol Metab. 2017;102(9):3381–3389. doi: 10.1210/jc.2017-00967
  50. Kim S, Won CW. Sex-different changes of body composition in aging: a systemic review. Arch Gerontol Geriatr. 2022;102:104711. EDN: ZZUDBO doi: 10.1016/j.archger.2022.104711
  51. Brettle H, Tran V, Drummond GR, et l. Sex hormones, intestinal inflammation, and the gut microbiome: Major influencers of the sexual dimorphisms in obesity. Front Immunol. 2022;13:971048. EDN: ZZLLTM doi: 10.3389/fimmu.2022.971048
  52. Faulkner JL, Belin de Chantemèle EJ. Sex hormones, aging and cardiometabolic syndrome. Biol Sex Differ. 2019;10(1):30. EDN: EBBYUK doi: 10.1186/s13293-019-0246-6
  53. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25(11):1657–1666. EDN: HAHWPX doi: 10.1038/s41591-019-0643-8
  54. Martínez-García MÁ, Montes-Nieto R, Fernández-Durán E, et al. Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab. 2013;98(2):E388–E396. doi: 10.1210/jc.2012-3414
  55. Di Vincenzo A, Granzotto M, Crescenzi M, et al. Dihydrotestosterone, and not testosterone, enhances the LPS-induced inflammatory cytokine gene expression in human adipocytes. Biomedicines. 2023;11(4):1194. EDN: UVNVDE doi: 10.3390/biomedicines11041194
  56. Gautier A, Bonnet F, Dubois S, et al. Associations between visceral adipose tissue, inflammation and sex steroid concentrations in men. Clin Endocrinol (Oxf). 2013;78(3):373–378. doi: 10.1111/j.1365-2265.2012.04401.x
  57. Montes-Nieto R, Insenser M, Martínez-García MÁ, et al. A nontargeted proteomic study of the influence of androgen excess on human visceral and subcutaneous adipose tissue proteomes. J Clin Endocrinol Metab. 2013;98(3):E576–E85. doi: 10.1210/jc.2012-3438
  58. Diebel ME, Diebel LN, Liberati DM. Gender dimorphism in adipose tissue response to stress conditions: a plausible mechanism to explain the conflicting data regarding trauma and obesity. J Trauma Acute Care Surg. 2016;81(6):1028–1034. doi: 10.1097/TA.0000000000001170
  59. Veldhuis JD, Dyer RB, Trushin SA, et al. Interleukins 6 and 8 and abdominal fat depots are distinct correlates of lipid moieties in healthy pre- and postmenopausal women. Endocrine. 2016;54(3):671–680. EDN: XTITAP doi: 10.1007/s12020-016-1041-3
  60. Kur P, Kolasa-Wołosiuk A, Misiakiewicz-Has K, et al. Sex hormone-dependent physiology and diseases of liver. Int J Environ Res Public Health. 2020;17(8):2620. EDN: FHLAHV doi: 10.3390/ijerph17082620
  61. Manabe E, Aoyagi K, Tachibana H, et al. Relationship of intra-abdominal adiposity and peripheral fat distribution to lipid metabolism in an island population in western Japan: gender differences and effect of menopause. Tohoku J Exp Med. 1999;188(3):189–202. doi: 10.1620/tjem.188.189
  62. Andersson DP, Thorell A, Löfgren P, et al. Omentectomy in addition to gastric bypass surgery and influence on insulin sensitivity: a randomized double blind controlled trial. Clin Nutr. 2014;33(6):991–996. doi: 10.1016/j.clnu.2014.01.004
  63. Gabriely I, Ma XH, Yang XM, et al. Leptin resistance during aging is independent of fat mass. Diabetes. 2002;51(4):1016–1021. EDN: EFOAVD doi: 10.2337/diabetes.51.4.1016
  64. Klein S. Clinical trial experience with fat-restricted vs. carbohydrate-restricted weight-loss diets. Obes Res. 2004;12(Suppl 2):141S-144S. doi: 10.1038/oby.2004.279
  65. Weber RV, Buckley MC, Fried SK, et al. Subcutaneous lipectomy causes a metabolic syndrome in hamsters. Am J Physiol Regul Integr Comp Physiol. 2000;279(3):R936–R943. doi: 10.1152/ajpregu.2000.279.3.R936
  66. Shestopalov AV, Davydov VV, Tumanyan GTs, et al. Influence of gender factor on endocrine function of mesenchymal tissues in children and adolescents. Molecular Medicine. 2023;(2):53–59. EDN: GTNPVX doi: 10.29296/24999490-2023-02-08
  67. Santosa S, Hensrud DD, Votruba SB, et al. The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. Am J Clin Nutr. 2008;88(4):1134–1141. doi: 10.1093/ajcn/88.4.1134
  68. Stubbins RE, Holcomb VB, Hong J, et al. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur J Nutr. 2012;51(7):861–870. EDN: SYVEIN doi: 10.1007/s00394-011-0266-4
  69. Bi Y, Jiang M, Guo W, et al. Sex-dimorphic and sex hormone-dependent role of steroid sulfatase in adipose inflammation and energy homeostasis. Endocrinology. 2018;159(9):3365–3377. doi: 10.1210/en.2018-00531
  70. Vander Wyst KB, Olson ML, Keller CS, et al. Sex as a moderator of body composition following a randomized controlled lifestyle intervention among Latino youth with obesity. Pediatr Obes. 2020;15(6):e12620. EDN: LBLCBP doi: 10.1111/ijpo.12620
  71. Dwaib HS, AlZaim I, Ajouz G, et al. Sex differences in cardiovascular impact of early metabolic impairment: interplay between dysbiosis and adipose inflammation. Mol Pharmacol. 2022;102(1):481–500. EDN: JVVXQR doi: 10.1124/molpharm.121.000338
  72. Rizzetto L, Fava F, Tuohy KM, et al. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun. 2018;92:12–34. EDN: YGZFFR doi: 10.1016/j.jaut.2018.05.008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eсо-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».