Endothelial microvesicles in peripheral blood of pregnant women with preeclampsia

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Endothelial dysfunction is the leading pathogenetic factor of preeclampsia. The function of the endothelium may be reflected in its ability to form microvesicles, which are generated by cells through the regulated shedding of the plasma membrane.

AIM: The aim of this study was to evaluate the endothelial microvesicles count in peripheral blood of women with normal pregnancy and pregnancy complications such as gestational arterial hypertension and severe preeclampsia.

MATERIALS AND METHODS: This study included 72 individuals, of whom there were healthy non-pregnant women (n = 21), women with normal pregnancy (n = 20), pregnant women with gestational arterial hypertension (n = 24), and pregnant women with severe preeclampsia (n = 7). To isolate microvesicles from peripheral blood, the differential centrifugation method was used. Microvesicles were treated with antibodies to vascular endothelial growth factor receptors (VEGFR1, VEGFR2), CD41a, CD34, and CD31 conjugated to fluorochromes. The absolute and relative count of microvesicles, as well as the fluorescence intensity, were analyzed using a BD FACSCanto II cytofluorimeter.

RESULTS: In normal pregnancy, the count of microvesicles with the VEGFR1+, VEGFR2+, CD31+, and CD34+ phenotype was increased compared to non-pregnant women. In gestational arterial hypertension compared to normal pregnancy, no differences were found in the endothelial microvesicles count and endothelial marker expression. In severe preeclampsia, the total microvesicles count and endothelial cell derived microvesicles count in the peripheral blood plasma decreased in comparison with normal pregnancy and gestational arterial hypertension. While the expression of endothelial markers such as VEGFR1, VEGFR2, and CD34 in microvesicles membranes in severe preeclampsia increased compared to normal pregnancy and gestational arterial hypertension.

CONCLUSIONS: An increase in the endothelial microvesicles count in normal pregnancy may be associated with an increase in the vascular bed area due to placenta formation. A decrease in the endothelial microvesicles count in severe preeclampsia is associated with damage to the endothelium and disruption of its function. Increased expression of endothelial cell receptors on microvesicles in severe preeclampsia may reflect compensatory reactions of the endothelium during the above damage.

About the authors

Valentina A. Mikhaylova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: mva_spb@mail.ru
ORCID iD: 0000-0003-1328-8157
SPIN-code: 1749-5100

Dr. Sci. (Biology)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Oksana B. Marko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: okmarko@ya.ru
ORCID iD: 0000-0001-6078-1791
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Alina A. Davydova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: alyadavydova@gmail.com
ORCID iD: 0000-0001-5313-2910
SPIN-code: 3494-1570
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Olga A. Bakulina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: olya.bakulina.03@mail.ru
ORCID iD: 0009-0009-8090-6518
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Marina A. Pereviazkina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: marinaperev17@mail.ru
ORCID iD: 0000-0002-6976-7061
SPIN-code: 7513-9894
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Edgar R. Mkrtchyan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ed.mkk@mail.ru
ORCID iD: 0009-0009-0741-7101
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Roman V. Kapustin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260

MD, Dr. Sci. (Medicine)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Sergey A. Selkov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: selkovsa@mail.ru
ORCID iD: 0000-0003-1560-7529
SPIN-code: 7665-0594

MD, Dr. Sci. (Medicine), Professor, Honored Scientist of the Russian Federation

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Dmitry I. Sokolov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: falcojugger@yandex.ru
ORCID iD: 0000-0002-5749-2531
SPIN-code: 3746-0000

Dr. Sci. (Biology), Assistant Professor

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Hodzhaeva ZC, Shmakov RG, Saveleva GM, et al. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical guidelines. Moscow; 2023. (In Russ.) [cited 2024 Apr 17]. Available from: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf
  2. Gaisin IR, Iskhakova AS. Diagnosis and treatment of hypertensive conditions of pregnancy. Arterial Hypertension. 2021;27(2):146–169. EDN: TRZMCA doi: 10.18705/1607-419X-2021-27-2-146-169
  3. Shifman EM, Floka SE, Tihova GP et al. Pathophysiological mechanisms of development of neurological complications of eclampsia: a systematic review. Obstetrics and Gynecology. 2011;(5):10–15. EDN: PFTUHD
  4. McDermott M, Miller EC, Rundek T, et al. Preeclampsia: association with posterior reversible encephalopathy syndrome and stroke. Stroke. 2018;49(3):524–530. doi: 10.1161/STROKEAHA.117.018416
  5. Kaptilnyy VA, Reyshtat DY. Preeclampsia: definition, new in pathogenesis, guidelines, treatment and prevention. V.F. Snegirev Archives of Obstetrics and Gynecology. 2020;7(1):19–30. EDN: ISNWEG doi: 10.18821/2313-8726-2020-7-1-19-30
  6. Ulfsdottir H, Grandahl M, Bjork J, et al. The association between pre-eclampsia and neonatal complications in relation to gestational age. Acta Paediatr. 2024;113(3):426–433. doi: 10.1111/apa.17080
  7. Sharma DD, Chandresh NR, Javed A, et al. The management of preeclampsia: a comprehensive review of current practices and future directions. Cureus. 2024;16(1). doi: 10.7759/cureus.51512
  8. Ristovska EC, Genadieva-Dimitrova M, Todorovska B, et al. The role of endothelial dysfunction in the pathogenesis of pregnancy-related pathological conditions: a review. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2023;44(2):113–137. doi: 10.2478/prilozi-2023-0032
  9. Thadhani R, Cerdeira AS, Karumanchi SA. Translation of mechanistic advances in preeclampsia to the clinic: long and winding road. FASEB J. 2024;38(3). doi: 10.1096/fj.202301808R
  10. Tong M, Chen Q, James JL, et al. Micro- and nano-vesicles from first trimester human placentae carry flt-1 and levels are increased in severe preeclampsia. Front Endocrinol (Lausanne). 2017;8:174. doi: 10.3389/fendo.2017.00174
  11. Guan X, Fu Y, Liu Y, et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Front Immunol. 2023;14. doi: 10.3389/fimmu.2023.1156039
  12. Wang Z, Zhao G, Zeng M, et al. Overview of extracellular vesicles in the pathogenesis of preeclampsiadagger. Biol Reprod. 2021;105(1):32–39. doi: 10.1093/biolre/ioab060
  13. Paul N, Sultana Z, Fisher JJ, et al. Extracellular vesicles — crucial players in human pregnancy. Placenta. 2023;140:30–38. doi: 10.1016/j.placenta.2023.07.006
  14. Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: a scoping review of methodology, rigour and results. J Extracell Vesicles. 2023;12(11). doi: 10.1002/jev2.12377
  15. Schwager SC, Reinhart-King CA. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. Curr Top Membr. 2020;86:255–278. doi: 10.1016/bs.ctm.2020.08.004
  16. Mikhailova VA, Ovchinnikova OM, Zainulina MS, et al. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med. 2014;157(6):751–756. EDN: QKBKBP doi: 10.1007/s10517-014-2659-x
  17. Gelderman MP, Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol Biol. 2008;484:79–93. doi: 10.1007/978-1-59745-398-1_6
  18. Rakocevic J, Orlic D, Mitrovic-Ajtic O, et al. Endothelial cell markers from clinician’s perspective. Exp Mol Pathol. 2017;102(2):303–313. doi: 10.1016/j.yexmp.2017.02.005
  19. Chen Z, Zhang M, Liu Y, et al. VEGF-A enhances the cytotoxic function of CD4(+) cytotoxic T cells via the VEGF-receptor 1/VEGF-receptor 2/AKT/mTOR pathway. J Transl Med. 2023;21(1):74. doi: 10.1186/s12967-023-03926-w
  20. Liu X, Li Z, Sun J, et al. Interaction between PD-L1 and soluble VEGFR1 in glioblastoma-educated macrophages. BMC Cancer. 2023;23(1):259. doi: 10.1186/s12885-023-10733-5
  21. Kideryova L, Pytlik R, Benesova K, et al. Endothelial cells (EC) and endothelial precursor cells (EPC) kinetics in hematological patients undergoing chemotherapy or autologous stem cell transplantation (ASCT). Hematol Oncol. 2010;28(4):192–201. doi: 10.1002/hon.941
  22. Genkel V, Dolgushin I, Baturina I, et al. Associations between Circulating VEGFR2(hi)-neutrophils and carotid plaque burden in patients aged 40-64 without established atherosclerotic cardiovascular disease. J Immunol Res. 2022;(2022). doi: 10.1155/2022/1539935
  23. Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res. 2019;115(9):1425–1434. doi: 10.1093/cvr/cvz132
  24. Guilhem A, Ciudad M, Aubriot-Lorton MH, et al. Pro-angiogenic changes of T-helper lymphocytes in hereditary hemorrhagic telangiectasia. Front Immunol. 2023;14. doi: 10.3389/fimmu.2023.1321182
  25. Choi SM, Park HJ, Choi EA, et al. Cellular heterogeneity of circulating CD4(+)CD8(+) double-positive T cells characterized by single-cell RNA sequencing. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-03013-4
  26. Kuzilkova D, Punet-Ortiz J, Aui PM, et al. Standardization of workflow and flow cytometry panels for quantitative expression profiling of surface antigens on blood leukocyte subsets: an HCDM CDmaps initiative. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.827898
  27. Pirabe A, Fruhwirth S, Brunnthaler L, et al. Age-dependent surface receptor expression patterns in immature versus mature platelets in mouse models of regenerative thrombocytopenia. Cells. 2023;12(19). doi: 10.3390/cells12192419
  28. Arakelian L, Lion J, Churlaud G, et al. Endothelial CD34 expression and regulation of immune cell response in-vitro. Sci Rep. 2023;13(1). doi: 10.1038/s41598-023-40622-7
  29. Pongerard A, Mallo L, Gachet C, et al. Leukodepletion filters-derived CD34+ cells as a cell source to study megakaryocyte differentiation and platelet formation. J Vis Exp. 2021;171. doi: 10.3791/62499
  30. Dragovic RA, Southcombe JH, Tannetta DS, et al. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol Reprod. 2013;89(6):151. doi: 10.1095/biolreprod.113.113266
  31. Rousseau M, Belleannee C, Duchez AC, et al. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One. 2015;10(1). doi: 10.1371/journal.pone.0116812
  32. Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res. 2012;110(2):356–369. doi: 10.1161/CIRCRESAHA.110.233403
  33. Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–2448. doi: 10.1182/blood-2007-03-078709
  34. Tokes-Fuzesi M, Ruzsics I, Rideg O, et al. Role of microparticles derived from monocytes, endothelial cells and platelets in the exacerbation of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3749–3757. doi: 10.2147/COPD.S175607
  35. Deng F, Wang S, Zhang L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review. J Cell Mol Med. 2017;21(9):1698–1710. doi: 10.1111/jcmm.13125
  36. Wang J, Zhong Y, Ma X, et al. Analyses of endothelial cells and endothelial progenitor cells released microvesicles by using microbead and q-dot based nanoparticle tracking analysis. Sci Rep. 2016;6. doi: 10.1038/srep24679
  37. Clarke LA, Hong Y, Eleftheriou D, et al. Endothelial injury and repair in systemic vasculitis of the young. Arthritis Rheum. 2010;62(6):1770–1780. doi: 10.1002/art.27418
  38. Bar-Sela G, Cohen I, Avisar A, et al. Circulating blood extracellular vesicles as a tool to assess endothelial injury and chemotherapy toxicity in adjuvant cancer patients. PLoS One. 2020;15(10). doi: 10.1371/journal.pone.0240994
  39. Murugesan S, Hussey H, Saravanakumar L, et al. Extracellular vesicles from women with severe preeclampsia impair vascular endothelial function. Anesth Analg. 2022;134(4):713–723. doi: 10.1213/ANE.0000000000005812
  40. Alahari S, Ausman J, Porter T, et al. Fibronectin and JMJD6 signature in circulating placental extracellular vesicles for the detection of preeclampsia. Endocrinology. 2023;164(4). doi: 10.1210/endocr/bqad013
  41. Levine L, Habertheuer A, Ram C, et al. Syncytiotrophoblast extracellular microvesicle profiles in maternal circulation for noninvasive diagnosis of preeclampsia. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-62193-7
  42. Messerli M, May K, Hansson SR, et al. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta. 2010;31(2):106–112. doi: 10.1016/j.placenta.2009.11.011
  43. Condrat CE, Varlas VN, Duica F, et al. Pregnancy-related extracellular vesicles revisited. Int J Mol Sci. 2021;22(8). doi: 10.3390/ijms22083904
  44. Campello E, Spiezia L, Radu CM, et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res. 2015;136(2):427–431. doi: 10.1016/j.thromres.2015.05.029
  45. Alijotas-Reig J, Palacio-Garcia C, Farran-Codina I, et al. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction. Am J Reprod Immunol. 2012;67(2):140–151. doi: 10.1111/j.1600-0897.2011.01072.x
  46. Salem M, Kamal S, El Sherbiny W, et al. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters. Hematology. 2015;20(3):154–159. doi: 10.1179/1607845414Y.0000000178
  47. Munaut C, Lorquet S, Pequeux C, et al. Differential expression of Vegfr-2 and its soluble form in preeclampsia. PLoS One. 2012;7(3). doi: 10.1371/journal.pone.0033475
  48. Lee DK, Nevo O. Microvascular endothelial cells from preeclamptic women exhibit altered expression of angiogenic and vasopressor factors. Am J Physiol Heart Circ Physiol. 2016;310(11):H1834–H1841. doi: 10.1152/ajpheart.00083.2016
  49. Abel T, Moodley J, Khaliq OP, et al. Vascular endothelial growth factor receptor 2: molecular mechanism and therapeutic potential in preeclampsia comorbidity with human immunodeficiency virus and severe acute respiratory syndrome coronavirus 2 infections. Int J Mol Sci. 2022;23(22). doi: 10.3390/ijms232213752
  50. Shomer E, Katzenell S, Zipori Y, et al. Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function. Hypertension. 2013;62(5):893–908. doi: 10.1161/HYPERTENSIONAHA.113.01494

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Count of microvesicles with the (а) VEGFR1+, (b) VEGFR2+, (c) CD31+, and (d) CD34+ phenotype in the peripheral blood plasma of healthy non-pregnant and pregnant women and patients with preeclampsia of varying severity. I, healthy non-pregnant women; II, women with normal pregnancy; III, pregnant women with gestational arterial hypertension; IV, pregnant women with severe preeclampsia

Download (355KB)
3. Fig. 2. Expression of the (а) VEGFR1, (b) VEGFR2, (c) CD31, and (d) CD34 receptors on microvesicles from the peripheral blood plasma of healthy non-pregnant and pregnant women and patients with preeclampsia of varying severity. I, healthy non-pregnant women; II, women with normal pregnancy; III, pregnant women with gestational arterial hypertension; IV, pregnant women with severe preeclampsia

Download (311KB)
4. Fig. 3. Scheme of changes in the relative microvesicle count and the expression of VEGFR1, VEGFR2, CD31, and CD34 receptors on microvesicles, and their relationships. The font size reflects the relative microvesicle count and the expression of endothelial cell receptors in the study groups. The lines indicate the presence of positive relationships between their expressions. I, healthy non-pregnant women; II, women with normal pregnancy; III, pregnant women with gestational arterial hypertension; IV, pregnant women with severe preeclampsia

Download (177KB)

Copyright (c) 2024 Eсо-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».