Gestational diabetes mellitus as a risk factor for neuropsychiatric pathology in offspring

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review article summarizes current ideas about gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity in offspring. Herein, we describe the genetic programming patterns of morphofunctional brain development during intrauterine life, which provide the basis for short- and long-term functions of the central nervous system. The results of experimental and clinical studies are presented that explain the pathophysiological mechanisms of the harmful effects on the fetal brain of hyperglycemia, hyperinsulinemia, hyperlepthyremia, oxidative stress, and systemic inflammation in the mother with pregnancy complicated by diabetes mellitus. We also discuss structural brain abnormalities and neuropsychiatric consequences. The article substantiates the need for the prevention of neuropsychiatric diseases in the offspring of women with obesity and other concomitant pathology at the stage of family planning, and at the onset of pregnancy, the expediency of early screening, treatment of gestational diabetes mellitus and neuroprotection in the perinatal period of the child’s life.

About the authors

Inna I. Evsyukova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

References

  1. Wang H, Li N, Chivese T, Werfalli M, et al; IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. IDF Diabetes atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res Clin Pract. 2022;183. doi: 10.1016/j.diabres.2021.109050
  2. Shevtsova GO, Moiseeva KE, Berezkina EN, et al. Some results of the assessment of morbidity of gestation diabetes mellitus. Medicine and health care organization. 2020;4(1):29–34. EDN: WSCZUA
  3. Epishkina-Minina AA, Khamoshina MB, Grabovsky VM, et al. Gestational diabetes mellitus: current state of the problem. Obstetrics and Gynecology: News, Opinions, Training. 2018;6(S3):23–29. EDN: BTDAXY doi: 10.24411/2303-9698-2018-13903
  4. Rodolaki K, Pergialiotis V, Iakovidou N, et al. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol. 2023;14. doi: 10.3389/fendo.2023.1125628
  5. Evsyukova II. The impact of maternal obesity and diabetes on fetal brain development (mechanisms and prevention). Journal of Obstetrics and Women’s Diseases. 2020;69(3):33–38. EDN: WPVJWB doi: 10.17816/JOWD69333-38
  6. Nahum Sacks K, Friger M, Shoham-Vardi I, et al. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am J Obstet Gynecol. 2016;215(3):380.e1–380.e3807. doi: 10.1016/j.ajog.2016.03.030
  7. Miroshnik EV, Ryumina II, Orbu AM., et al. The phenotype of a newborn with diabetic fetopathy. Neonatologiya: novosti, mneniya, obuchenie. 2020;8(4):28–32. EDN: OLVBZP doi: 10.33029/2308-2402-2020-8-4-28-32
  8. Eletri L, Mitanchez D. How do the different types of maternal diabetes during pregnancy influence offspring outcomes? Nutrients. 2022;14(18):3870. doi: 10.3390/nu14183870
  9. Perna R, Loughan AR, Le J, et al. Gestational diabetes: long-term central nervous system developmental and cognitive sequelae. Appl Neuropsychol Child. 2015;4(3):217–220. doi: 10.1080/21622965.2013.874951
  10. Nomura Y, Marks DJ, Grossman B, et al. Exposure to gestational diabetes mellitus and low socioeconomic status: effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch Pediatr Adolesc Med. 2012;166(4):337–343. doi: 10.1001/archpediatrics.2011.784
  11. Cai S, Qiu A, Broekman BF, et al. The influence of gestational diabetes on neurodevelopment of children in the first two years of life: a prospective study. PLoS One. 2016;11(9). doi: 10.1371/journal.pone.0162113
  12. Dionne G, Boivin M, Séguin JR, et al. Gestational diabetes hinders language development in offspring. Pediatrics. 2008;122(5):e1073–e1079. doi: 10.1542/peds.2007-3028
  13. Nikitina IL, Konoplya IS, Polyanskaya AA, et al. Characterization of psychological and physical development in children of gestation diabetes pregnancies. Medical Council. 2017;(9):14–20. EDN: ZCIRJX doi: 10.21518/2079-701X-2017-9-14-20
  14. Alves JM, Smith A, Chow T, et al. Prenatal exposure to gestational diabetes mellitus is associated with mental health outcomes and physical activity has a modifying role. Res Sq. 2023. doi: 10.21203/rs.3.rs-3290222/v1
  15. Zhao L, Li X, Liu G, et al. The association of maternal diabetes with attention deficit and hyperactivity disorder in offspring: a meta-analysis. Neuropsychiatr Dis Treat. 2019;15:675–684. doi: 10.2147/NDT.S189200
  16. Schmitt J, Romanos M. Prenatal and perinatal risk factors for attention-deficit/hyperactivity disorder. Arch Pediatr Adolesc Med. 2012;166(11):1074–1075. doi: 10.1001/archpediatrics.2012.1078
  17. Xiang AH, Wang X, Martinez MP, et al. Association of maternal diabetes with autism in offspring. JAMA. 2015;313(14):1425–1434. doi: 10.1001/jama.2015.2707
  18. Wan H, Zhang C, Li H, et al. Association of maternal diabetes with autism spectrum disorders in offspring: a systemic review and meta-analysis. Medicine (Baltimore). 2018;97(2). doi: 10.1097/MD.0000000000009438
  19. Cannon M, Jones PB, Murray RM. Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry. 2002;159(7):1080–1092. doi: 10.1176/appi.ajp.159.7.1080
  20. Van Lieshout RJ, Voruganti LP. Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci. 2008;33(5):395–404.
  21. Nogueira Avelar E Silva R, Yu Y, Liew Z, et al. Associations of maternal diabetes during pregnancy with psychiatric disorders in offspring during the first 4 decades of life in a population-based danish birth cohort. JAMA Netw Open. 2021;4(10). doi: 10.1001/jamanetworkopen.2021.28005
  22. Kong L, Nilsson IAK, Brismar K, et al. Associations of different types of maternal diabetes and body mass index with offspring psychiatric disorders. JAMA Netw Open. 2020;3(2). doi: 10.1001/jamanetworkopen.2019.20787
  23. Perrone S, Grassi F, Caporilli C, et al. Brain damage in preterm and full-term neonates: serum biomarkers for the early diagnosis and intervention. Antioxidants (Basel). 2023;12(2):309. doi: 10.3390/antiox12020309
  24. Protsenko EV, Vasil’eva ME, Peretyatko LP, et al. Morphological changes in ventricular germinal zone and neocortex of the cerebral hemispheres in human fetuses and newborns on weeks 22–40 of prenatal development. Ontogenesis. 2014;45(5):349–354. EDN: SLIVLF doi: 10.7868/S047514050073
  25. Oka Y, Sato M, Chou SJ. Editorial: the earliest-born cortical neurons as multi-tasking pioneers: expanding roles for subplate neurons in cerebral cortex organization and function, volume II. Front Neuroanat. 2023;17. doi: 10.3389/fnana.2023.1211678
  26. Wilson S, Pietsch M, Cordero-Grande L, et al. Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain. Elife. 2023;12. doi: 10.7554/eLife.83727
  27. Inder TE, Volpe JJ, Anderson PJ. Defining the neurologic consequences of preterm birth. N Engl J Med. 2023;389(5):441–453. doi: 10.1056/NEJMra2303347
  28. Alhajeri MM, Alkhanjari RR, Hodeify R, et al. Neurotransmitters, neuropeptides and calcium in oocyte maturation and early development. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.980219
  29. Xing L, Huttner WB. Neurotransmitters as modulators of neural progenitor cell proliferation during mammalian neocortex development. Front Cell Dev Biol. 2020;8:391. doi: 10.3389/fcell.2020.00391
  30. Kolk SM, Rakic P. Development of prefrontal cortex. Neuropsychopharmacology. 2022;47(1):41–57. doi: 10.1038/s41386-021-01137-9
  31. Brummelte S, Mc Glanaghy E, Bonnin A, et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience. 2017;342:212–231. doi: 10.1016/j.neuroscience.2016.02.037
  32. Herlenius E, Lagercrantz H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev. 2001;65(1):21–37. doi: 10.1016/s0378-3782(01)00189-x
  33. Evsyukova II. Molecular mechanisms of the functioning system mother-placenta-fetus in women with obesity and gestational diabetes mellitus. Molekulyarnaya Meditsina (Molecular medicine). 2020;18(1):11–15. EDN: ORKJZD doi: 10.29296/24999490-2020-01-02
  34. Carrasco-Wong I, Moller A, Giachini FR, et al. Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2). doi: 10.1016/j.bbadis.2019.165535
  35. Bedell S, Hutson J, de Vrijer B, et al. Effects of maternal obesity and gestational diabetes mellitus on the placenta: current knowledge and targets for therapeutic interventions. Curr Vasc Pharmacol. 2021;19(2):176–192. doi: 10.2174/1570161118666200616144512
  36. Xuan DS, Zhao X, Liu YC, et al. Brain development in infants of mothers with gestational diabetes mellitus: a diffusion tensor imaging study. J Comput Assist Tomogr. 2020;44(6):947–952. doi: 10.1097/RCT.0000000000001110
  37. You L, Deng Y, Li D, et al. GLP-1 rescued gestational diabetes mellitus-induced suppression of fetal thalamus development. J Biochem Mol Toxicol. 2023;37(2). doi: 10.1002/jbt.23258
  38. Ekin A, Sever B. Changes in fetal intracranial anatomy during maternal pregestational and gestational diabetes. J Obstet Gynaecol Res. 2023;49(2):587–596. doi: 10.1111/jog.15502
  39. Ruth Gründahl F, Hammer K, Braun J, et al. Fetal brain development in diabetic pregnancies and normal controls. J Perinat Med. 2018;46(7):797–803. doi: 10.1515/jpm-2017-0341
  40. Jing YH, Song YF, Yao YM, et al. Retardation of fetal dendritic development induced by gestational hyperglycemia is associated with brain insulin/IGF-I signals. Int J Dev Neurosci. 2014;37:15–20. doi: 10.1016/j.ijdevneu.2014.06.004
  41. Tinker SC, Gilboa SM, Moore CA, et al. National birth defects prevention study. specific birth defects in pregnancies of women with diabetes: national birth defects prevention study, 1997–2011. Am J Obstet Gynecol. 2020;222(2):176.e1–176.e11. doi: 10.1016/j.ajog.2019.08.028
  42. Cacciatore M, Grasso EA, Tripodi R, et al. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne). 2022;13. doi: 10.3389/fendo.2022.1047545
  43. Desoye G, Carter AM. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol. 2022;18(10):593–607. doi: 10.1038/s41574-022-00717-z
  44. Ornoy A, Becker M, Weinstein-Fudim L, et al. Diabetes during pregnancy: a maternal disease complicating the course of pregnancy with long-term deleterious effects on the offspring. A Clinical Review. Int J Mol Sci. 2021;22(6). doi: 10.3390/ijms22062965
  45. Linares-Pineda T, Peña-Montero N, Fragoso-Bargas N, et al. Epigenetic marks associated with gestational diabetes mellitus across two time points during pregnancy. Clin Epigenetics. 2023;15(1):110. doi: 10.1186/s13148-023-01523-8
  46. Lehnen H, Zechner U, Haaf T. Epigenetics of gestational diabetes mellitus and offspring health: the time for action is in early stages of life. Mol Hum Reprod. 2013;19(7):415–422. doi: 10.1093/molehr/gat020
  47. Hjort L, Novakovic B, Grunnet LG, et al. Diabetes in pregnancy and epigenetic mechanisms-how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol. 2019;7(10):796–806. doi: 10.1016/S2213-8587(19)30078-6
  48. Haertle L, El Hajj N, Dittrich M, et al. Epigenetic signatures of gestational diabetes mellitus on cord blood methylation. Clin Epigenetics. 2017;9:28. doi: 10.1186/s13148-017-0329-3
  49. Sulyok E, Farkas B, Bodis J. Pathomechanisms of prenatally programmed adult diseases. Antioxidants (Basel). 2023;12(7):1354. doi: 10.3390/antiox12071354
  50. Aviel-Shekler K, Hamshawi Y, Sirhan W, et al. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Transl Psychiatry. 2020;10(1):412. doi: 10.1038/s41398-020-01096-7
  51. Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn dna methylation: findings from the pregnancy and childhood epigenetics consortium. Diabetes Care. 2020;43(1):98–105. doi: 10.2337/dc19-0524
  52. Camuso S, La Rosa P, Fiorenza MT, et al. Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis. 2022;163. doi: 10.1016/j.nbd.2021.105606
  53. Sardar R, Hami J, Soleimani M, et al. Maternal diabetes-induced alterations in the expression of brain-derived neurotrophic factor in the developing rat hippocampus. J Chem Neuroanat. 2021;114. doi: 10.1016/j.jchemneu.2021.101946
  54. Briana DD, Papastavrou M, Boutsikou M, et al. Differential expression of cord blood neurotrophins in gestational diabetes: the impact of fetal growth abnormalities. J Matern Fetal Neonatal Med. 2018;31(3):278–283. doi: 10.1080/14767058.2017.1281907
  55. Piazza FV, Segabinazi E, de Meireles ALF, et al. Severe uncontrolled maternal hyperglycemia induces microsomia and neurodevelopment delay accompanied by apoptosis, cellular survival, and neuroinflammatory deregulation in rat offspring hippocampus. Cell Mol Neurobiol. 2019;39(3):401–414. doi: 10.1007/s10571-019-00658-8
  56. Han VX, Patel S, Jones HF, et al. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17(9):564–579. doi: 10.1038/s41582-021-00530-8
  57. Money KM, Barke TL, Serezani A, et al. Gestational diabetes exacerbates maternal immune activation effects in the developing brain. Mol Psychiatry. 2018;23(9):1920–1928. doi: 10.1038/mp.2017.191
  58. De Sousa RAL. Animal models of gestational diabetes: characteristics and consequences to the brain and behavior of the offspring. Metab Brain Dis. 2021;36(2):199–204. doi: 10.1007/s11011-020-00661-9
  59. Feldhaus B, Dietzel ID, Heumann R, et al. Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J Soc Gynecol Investig. 2004;11(2):89–96. doi: 10.1016/j.jsgi.2003.08.004
  60. Lee TH, Cheng KK, Hoo RL, et al. The novel perspectives of adipokines on brain health. Int J Mol Sci. 2019;20(22):5638. doi: 10.3390/ijms20225638
  61. Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol Autism. 2011;2:13. doi: 10.1186/2040-2392-2-13
  62. Iwabuchi T, Takahashi N, Nishimura T, et al. Associations among maternal metabolic conditions, cord serum leptin levels, and autistic symptoms in children. Front Psychiatry. 2022;12. doi: 10.3389/fpsyt.2021.816196
  63. Babacheva E, Rallis D, Christou H, et al. Maternal diabetes and the role of neonatal reticulocyte hemoglobin content as a biomarker of iron status in the perinatal period. Front Endocrinol (Lausanne). 2022;13. doi: 10.3389/fendo.2022.1011897
  64. Georgieff MK. Iron deficiency in pregnancy. Am J Obstet Gynecol. 2020;223(4):516–524. doi: 10.1016/j.ajog.2020.03.006
  65. Tran PV, Carlson ES, Fretham SJ, et al. Early-life iron deficiency anemia alters neurotrophic factor expression and hippocampal neuron differentiation in male rats. J Nutr. 2008;138(12):2495–2501. doi: 10.3945/jn.108.091553
  66. He XJ, Dai RX, Tian CQ, et al. Neurodevelopmental outcome at 1 year in offspring of women with gestational diabetes mellitus. Gynecol Endocrinol. 2021;37(1):88–92. doi: 10.1080/09513590.2020.1754785
  67. Devarshi PP, Grant RW, Ikonte CJ, et al. Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients. 2019;11(5):1107. doi: 10.3390/nu11051107
  68. Hai-Tao Y, Zhi-Heng G, Yi-Ru C, et al. Gestational diabetes mellitus decreased umbilical cord blood polyunsaturated fatty acids: a meta-analysis of observational studies. Prostaglandins Leukot Essent Fatty Acids. 2021;171. doi: 10.1016/j.plefa.2021.102318
  69. Elshani B, Kotori V, Daci A. Role of omega-3 polyunsaturated fatty acids in gestational diabetes, maternal and fetal insights: current use and future directions. J Matern Fetal Neonatal Med. 2021;34(1):124–136. doi: 10.1080/14767058.2019.1593361
  70. Titmuss A, D’Aprano A, Barzi F, et al. Hyperglycemia in pregnancy and developmental outcomes in children at 18-60 months of age: the PANDORA Wave 1 study. J Dev Orig Health Dis. 2022;13(6):695–705. doi: 10.1017/S2040174422000101
  71. Torres-Espinola FJ, Berglund SK, García-Valdés LM, et al. Maternal obesity, overweight and gestational diabetes affect the offspring neurodevelopment at 6 and 18 months of age--a follow up from the PREOBE cohort. PLoS One. 2015;10(7). doi: 10.1371/journal.pone.0133010
  72. Lackovic M., Milicic B., Mihajlovic S., et al. Gestational diabetes and risk assessment of adverse perinatal outcomes and newborns early motoric development. Medicina (Kaunas Lithuania). 2021;57(8):741. doi: 10.3390/medicina57080741
  73. Arabiat D, Al Jabery M, Jenkins M, et al. Language abilities in children born to mothers diagnosed with diabetes: a systematic review and meta-analysis. Early Hum Dev. 2021;159. doi: 10.1016/j.earlhumdev.2021.105420
  74. Rowland J, Wilson CA. The association between gestational diabetes and ASD and ADHD: a systematic review and meta-analysis. Sci Rep. 2021;11(1):5136. doi: 10.1038/s41598-021-84573-3
  75. Lin CH, Lin WD, Chou IC, et al. Infants of mothers with diabetes and subsequent attention deficit hyperactivity disorder: a retrospective cohort study. Front Pediatr. 2019;7:452. doi: 10.3389/fped.2019.00452
  76. Lawrence RL, Wall CR, Bloomfield FH. Prevalence of gestational diabetes according to commonly used data sources: an observational study. BMC Pregnancy Childbirth. 2019;19(1):349. doi: 10.1186/s12884-019-2521-2
  77. Evsyukova II. Maternal circadian rhythm and its implications for offspring health. Journal of Obstetrics and Women’s Diseases. 2022;71(4):95–105. EDN: RSKRUY doi: 10.17816/JOWD108049.
  78. Häusler S, Robertson NJ, Golhen K, et al. Melatonin as a therapy for preterm brain injury: what is the evidence? Antioxidants (Basel). 2023;12(8):1630. doi: 10.3390/antiox12081630

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eсо-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».