Multi-channel functional electrostimulation: the method of restoring the walking function in patients with a past history of acute cerebrovascular event
- Authors: Skvortsov D.V.1,2,3, Klimov L.V.1, Lobunko D.A.1, Ivanova G.E.1,2
-
Affiliations:
- Federal Center of Brain Research and Neurotechnologies
- The Russian National Research Medical University named after N.I. Pirogov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- Issue: Vol 16, No 2 (2025)
- Pages: 69-81
- Section: Reviews
- URL: https://bakhtiniada.ru/clinpractice/article/view/312010
- DOI: https://doi.org/10.17816/clinpract684717
- EDN: https://elibrary.ru/JCFLTU
- ID: 312010
Cite item
Abstract
Multi-channel functional electrostimulation (MFES) represents a promising method for the rehabilitation of post-stroke patients, aimed at restoring the walking function in various periods after an acute cerebrovascular event. The review systematizes the modern concepts of using the MFES in patients with the consequences of cerebral stroke, analyzing the technical parameters of stimulation, the methodical approaches to conducting the procedures and the clinical efficiency of the method. The analysis of literature data demonstrates significant variability of MFES protocols: the stimulation frequency varies from 20 to 100 Hz, the duration of the procedure ranges from 15 to 60 minutes, the treatment course can last from 3 to 30 weeks. The main targets of stimulation are the four groups of muscles in the lower limbs — the anterior tibial muscle, the plantar flexors, the quadriceps muscle of thigh and the group of muscles on the posterior surface of thigh. The synchronization of stimulation with the walking cycle is conducted predominantly by means of contact sensors, accelerometers and electromyographic signals; modern developments include the inertial systems and the machine learning algorithms. The review presents a combined analysis of the technical aspects of MFES from the point of view of staging of motor learning and individualization of the stimulation parameters. Special attention was paid to the integration of MFES with the robotic devices, including the exoskeletons, which represents a new trend in rehabilitation. Along with the absence of the unified criteria for choosing the stimulation parameters, it is worth noting that there is a necessity of differentiated approach depending on the type of motor disorders, on the duration of the disease and on the cognitive capabilities of the patient. The analysis presented justifies the necessity of developing personalized MFES protocols and arranging a large-scale research for optimizing the stimulation parameters in the rehabilitation of post-stroke patients.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry V. Skvortsov
Federal Center of Brain Research and Neurotechnologies; The Russian National Research Medical University named after N.I. Pirogov; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
Author for correspondence.
Email: dskvorts63@mail.ru
ORCID iD: 0000-0002-2794-4912
SPIN-code: 6274-4448
MD, PhD, Professor
Russian Federation, 1 Ostrovityanova st, bldg 10, Moscow, 117513; Moscow; MoscowLeonid V. Klimov
Federal Center of Brain Research and Neurotechnologies
Email: dr.klimov@mail.ru
ORCID iD: 0000-0003-1314-3388
SPIN-code: 5618-0734
MD, PhD
Russian Federation, 1 Ostrovityanova st, bldg 10, Moscow, 117513Danila A. Lobunko
Federal Center of Brain Research and Neurotechnologies
Email: doctorlobunko@gmail.com
ORCID iD: 0009-0009-7741-2904
SPIN-code: 6226-5283
Russian Federation, 1 Ostrovityanova st, bldg 10, Moscow, 117513
Galina E. Ivanova
Federal Center of Brain Research and Neurotechnologies; The Russian National Research Medical University named after N.I. Pirogov
Email: reabilivanova@mail.ru
ORCID iD: 0000-0003-3180-5525
SPIN-code: 4049-4581
MD, PhD, Professor
Russian Federation, 1 Ostrovityanova st, bldg 10, Moscow, 117513; MoscowReferences
- Maeda A, Yuasa T, Nakamura K, et al. Physical performance tests after stroke: Reliability and validity. Am J Phys Med Rehabil. 2000;79(6):519–525. doi: 10.1097/00002060-200011000-00008
- Langhammer B, Stanghelle JK, Lindmark B. Exercise and health-related quality of life during the first year following acute stroke. A randomized controlled trial. Brain Inj. 2008;22(2):135–145. doi: 10.1080/02699050801895423
- Lewek MD, Bradley CE, Wutzke CJ, Zinder SM. The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke. J Appl Biomech. 2014;30(1):31–36. doi: 10.1123/jab.2012-0208
- Awad LN, Palmer JA, Pohlig RT, et al. Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabil Neural Repair. 2015;29(5):416–423. doi: 10.1177/1545968314552528
- Perry J, Burnfield JM. Gait analysis: Normal and pathological function. Slack Incorporated: West Deptford, NJ, USA; 2010.
- Wang Y, Mukaino M, Ohtsuka K, et al. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int J Rehabil Res. 2020;43(1):69–75. doi: 10.1097/MRR.0000000000000391
- Skvortsov DV, Kaurkin SN, Grebenkina NV, Ivanova GE. Typical changes in gait biomechanics in patients with subacute ischemic stroke. Diagnostics (Basel). 2025;15(5):511. doi: 10.3390/diagnostics15050511
- Do A, Soares S, Almeida C, et al. Late physiotherapy rehabilitation changes gait patterns in post-stroke patients. Biomed Hum Kinet. 2017;9(1):14–18. doi: 10.1515/bhk-2017-0003
- Veerbeek JM, van Wegen E, van Peppen R, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. doi: 10.1371/journal.pone.0087987
- Moe JH, Post HW. Functional electrical stimulation for ambulation in hemiplegia. Lancet. 1962;82:285–288.
- Kesar TM, Perumal R, Jancosko A, et al. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90(1):55–66. doi: 10.2522/ptj.20090140
- Santos GF, Jakubowitz E, Pronost N, et al. Predictive simulation of post-stroke gait with functional electrical stimulation. Sci Rep. 2021;11(1):21351. doi: 10.1038/s41598-021-00658-z
- Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–105.
- Sabut SK, Sikdar C, Mondal R, et al. Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke. Dis Rehab. 2010;32(19):1594–1603. doi: 10.3109/09638281003599596
- Sabut SK, Sikdar C, Kumar R, Mahadevappa M. Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehab. 2011;29(4):393–400. doi: 10.3233/NRE-2011-0717
- Tan Z, Liu H, Yan T, et al. The effectiveness of functional electrical stimulation based on a normal gait pattern on subjects with early stroke: A randomized controlled trial. Biomed Res Int. 2014;2014:545408. doi: 10.1155/2014/545408
- Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: A randomized placebo-controlled trial. Stroke. 2005;36(1):80–85. doi: 10.1161/01.STR.0000149623.24906.63
- Yang CY, Kim TJ, Lee JH, et al. The effect of functional electrical stimulation on the motor function of lower limb in hemiplegic patients. J Korean Acad Rehab Med. 2009;33(1):29–35.
- Mercer VS, Chang SH, Williams CD, et al. Effects of an exercise program to increase hip abductor muscle strength and improve lateral stability following stroke: A single subject design. J Geriatr Phys Ther. 2009;32(2):50–59.
- Allen JL, Ting LH, Kesar TM. Gait rehabilitation using functional electrical stimulation induces changes in ankle muscle coordination in stroke survivors: A preliminary study. Front Neurol. 2018;9:1127. doi: 10.3389/fneur.2018.01127
- Aout T, Begon M, Jegou B, et al. Effects of functional electrical stimulation on gait characteristics in healthy individuals: A systematic review. Sensors. 2023;23(21):8684. doi: 10.3390/s23218684
- Hakansson NA, Kesar T, Reisman D, et al. Effects of fast functional electrical stimulation gait training on mechanical recovery in poststroke gait. Artif Organs. 2011;35(3):217–220. doi: 10.1111/j.1525-1594.2011.01215.x
- Tenniglo MJ, Buurke JH, Prinsen EC, et al. Effect of reduced afferent feedback on adaptation of walking pattern in functional electrical stimulation. J Rehabil Med. 2018;50(8):719–724. doi: 10.2340/16501977-2367
- Purohit R, Varas-Diaz G, Bhatt T. Functional electrical stimulation to enhance reactive balance among people with hemiparetic stroke. Exp Brain Res. 2024;242(3):559–570. doi: 10.1007/s00221-023-06729-z
- Shin HE, Kim M, Lee D, et al. Therapeutic effects of functional electrical stimulation on physical performance and muscle strength in post-stroke older adults: A review. Ann Geriatr Med Res. 2022;26(1):16–24. doi: 10.4235/agmr.22.0006
- Van Bloemendaal M, Bus SA, de Boer CE, et al. Gait training assisted by multi-channel functional electrical stimulation early after stroke: Study protocol for a randomized controlled trial. Trials. 2016;17(1):477. doi: 10.1186/s13063-016-1604-x
- Kojović J, Djurić-Jovicić M, Dosen S, et al. Sensor-driven four-channel stimulation of paretic leg: Functional electrical walking therapy. J Neurosci Methods. 2009;181(1):100–105. doi: 10.1016/j.jneumeth.2009.04.005
- Cheng JS, Yang YR, Cheng SJ, et al. Effects of combining electric stimulation with active ankle dorsiflexion while standing on a rocker board: A pilot study for subjects with spastic foot after stroke. Arch Phys Med Rehabil. 2010;91(4):505–512. doi: 10.1016/j.apmr.2009.11.022
- Hong Z, Sui M, Zhuang Z, et al. Effectiveness of neuromuscular electrical stimulation on lower limbs of patients with hemiplegia after chronic stroke: A systematic review. Arch Phys Med Rehabil. 2018;99(5):1011–1022.e1. doi: 10.1016/j.apmr.2017.12.019
- Chen S, Gao J, Zhou Y, et al. Implications of neuromuscular electrical stimulation on gait ability, balance and kinematic parameters after stroke: A systematic review and meta-analysis. J Neuroeng Rehabil. 2024;21(1):164. doi: 10.1186/s12984-024-01462-2
- Sharif F, Ghulam S, Malik AN, Saeed Q. Effectiveness of Functional Electrical Stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke. J Coll Physicians Surg Pak. 2017;27(11):703–706.
- Lee HJ, Cho KH, Lee WH. The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients. Am J Phys Med Rehabil. 2013;92(12):1051–1059. doi: 10.1097/PHM.0000000000000040
- Alon G, Conroy VM, Donner TW. Intensive training of subjects with chronic hemiparesis on a motorized cycle combined with functional electrical stimulation (fes): A feasibility and safety study. Physiother Res Int. 2011;16(2):81–91. doi: 10.1002/pri.475
- Binder-Macleod S, Kesar T. Catchlike property of skeletal muscle: Recent findings and clinical implications. Muscle Nerve. 2005;31(6):681–193. doi: 10.1002/mus.20290
- Maladen RD, Perumal R, Wexler AS, Binder-Macleod SA. Effects of activation pattern on nonisometric human skeletal muscle performance. J Appl Physiol (1985). 2007;102(5):1985–1991. doi: 10.1152/japplphysiol.00729.2006
- Garland SJ, Griffin L. Motor unit double discharges: Statistical anomaly or functional entity? Can J Appl Physiol. 1999;24(2):113–130. doi: 10.1139/h99-010
- Nam MJ, Kim YJ, Tian MY, Kim MK. Effects of functional electrical stimulation during gait training on gait, balance, and lower extremity function in chronic stroke patients. J Korean Soc Phys Med. 2024;19(3):29–36. doi: 10.13066/kspm.2024.19.3.29
- Dantas MT, Fernani DC, da Silva TD, et al. Gait training with functional electrical stimulation improves mobility in people post-stroke. Int J Environ Res Public Health. 2023;20(9):5728. doi: 10.3390/ijerph20095728
- Ji F, Qiu S, Liu Y, et al. A trajectory-adaptive walking assistance strategy based on functional electrical stimulation for exoskeleton to help stroke patients restore natural gait. In: 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). doi: 10.1109/AIM52237.2022.9863314
- Kluding PM, Dunning K, O’Dell MW, et al. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke. 2013;44(6):1660–1669. doi: 10.1161/STROKEAHA.111.000334
- Thrasher TA, Flett HM, Popovic MR. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord. 2006;44(6):357–361. doi: 10.1038/sj.sc.3101864
- Bao X, Luo JN, Shao YC, et al. Effect of functional electrical stimulation plus body weight-supported treadmill training for gait rehabilitation in patients with poststroke: a retrospective case-matched study. Eur J Phys Rehabil Med. 2020;56(1):34–40. doi: 10.23736/S1973-9087.19.05879-9
- Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: A critical appraisal. Eur J Appl Physiol. 2011;111:2399–2407. doi: 10.1007/s00421-011-2128-4
- Sharma N, Mushahwar V, Stein R. Dynamic optimization of FES and orthosis-based walking using simple models. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):114–126. doi: 10.1109/tnsre.2013.2280520
- Strausser K, Kazerooni H. The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA; 2011. Р. 4911–4916. doi: 10.1109/iros.2011.6095025
- Farris RJ, Quintero HA, Murray SA, et al. A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):482–490. doi: 10.1109/TNSRE.2013.2268320
- Popovic MR, Masani K, Micera S. Functional electrical stimulation therapy: Recovery of function following spinal cord injury and stroke. London: Springer London; 2012. Р. 105–121. doi: 10.1007/978-1-4471-2277-7_7
- Kastalskiy IA, Khoruzhko MA, Skvortsov DV. A functional electrical stimulation system for integration in an exoskeleton. Modern technologies in medicine. 2018;10(3):104–109. doi: 10.17691/stm2018.10.3.12 EDN: SIPAQH
- Lutokhin GM, Kashezhev AG, Rassulova MA, et al. Application of exoskeleton with functional electrostimulation for rebalancing of patients in acute and early recovery periods of ischemic stroke. Problems of balneology, physiotherapy and exercise therapy. 2023;100(5):5–13. doi: 10.17116/kurort20231000515 EDN: QZOLDH
- Lutokhin GM, Kashezhev AG, Pogonchenkova IV, et al. Effectiveness and safety of robotic mechanotherapy with FES and VR in restoring gait and balance in the acute and early rehabilitation period of ischemic stroke: Prospective randomized comparative study. Bull of Rehabil Med. 2023;22(5):22–29. doi: 10.38025/2078-1962-2023-22-5-22-29
- Nam YG, Lee JW, Park JW, et al. Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: A randomized controlled trial. Arch Phys Med Rehabil. 2019;100(1):26–31. doi: 10.1016/j.apmr.2018.06.020
- Fitts PM, Posner MI. Human performance. Belmont: Brooks/Cole Publishing Company; 1967.
- Freivogel S, Fries W. Motorische rehabilitation. In: Frommelt P, Lösslein H, editors. Neuro-rehabilitation. Berlin/Heidelberg: Springer; 2010. P. 225–266.
- Wulf D. Motorists lernen. In: Hüter-Becker A, Dölken M, editors. Physiotherapie in der neurologie. Stuttgart: Georg Thieme; 2010. P. 41–72.
- Majsak MJ. Application of motor learning principles to the stroke population. Top Stroke Rehabil. 1996;3(2):37–59. doi: 10.1080/10749357.1996.11754113
- Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: A review. Biomed Eng Online. 2020;19(1):34. doi: 10.1186/s12938-020-00773-4
- Vitenzon AC. Patterns of normal and pathological human walking. Moscow: Zerkalo-M; 1998. 271 p. (In Russ.)
- Bakhtiary AH, Fatemy E. Does electrical stimulation reduce spasticity after stroke? A randomized controlled study. Clin Rehabil. 2008;22(5):418–425. doi: 10.1177/0269215507084008
- Skvortsov DV, Klimov LV, Grebenkina NV. Functional electrical stimulation method: Recommended application parameters. Physical and rehabilitation medicine, medical rehabilitation. 2024;6(3):263–279. doi: 10.36425/rehab635187 EDN: QBJAEZ
Supplementary files
